
IMS

IMS Connect Guide and Reference

Version 9

SC18-9287-04

���

IMS

IMS Connect Guide and Reference

Version 9

SC18-9287-04

���

Note:

Before using this information and the product it supports, read the information in “Notices” on page 241.

This edition applies to IMS Version 9 (program number 5655-J38) and to all subsequent releases and modifications

until otherwise indicated in new editions. This edition replaces SC18-9287-03.

© Copyright International Business Machines Corporation 2000, 2007. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures vii

Tables ix

About This Book xiii

Prerequisite Knowledge xiii

Summary of Contents xiii

IBM Product Names Used in This Information . . xiv

How to Read Syntax Diagrams xv

Accessibility Features for IMS Version 9 xvii

Accessibility Features xvii

Keyboard Navigation xvii

Related Accessibility Information xvii

IBM and Accessibility xvii

How to Send Your Comments xvii

Summary of Changes xix

Changes to the Current Edition of This Book for

IMS Version 9 xix

Changes to This Book for IMS Version 9 xx

Library Changes for IMS Version 9 xx

New and Revised Titles xx

Organizational Changes xxi

Terminology Changes xxi

Part 1. IMS Connect Administration 1

Chapter 1. Overview of IMS Connect . . 3

Introduction to IMS Connect 3

IMS Connect Components 4

Chapter 2. IMS Connect Definition and

Tailoring 7

Defining the IMS Connect Environment 8

Configuring IMS Connect 8

Defining IMS Connect Security 19

Configuring the IMS Connect Base Primitive

Environment (BPE) 20

Setting IMS Connect Allocations 26

Invoking IMS Connect 27

Customizing IMS Connect 28

Installing HWSJAVA0, HWSUINIT, HWSYDRU0,

HWSSMPL0, and HWSSMPL1 30

Modifying HWSJAVA0, HWSUINIT, HWSSMPL0,

HWSSMPL1, and HWSYDRU0 32

Modifying User Message Exits to Provide Trusted

User Support 33

Modifying HWSSMPL0 and HWSSMPL1 for

PassTicket 34

Modifying HWSIMSO0 and HWSIMSO1 . . . 34

Installing HWSCSLO0 and HWSCSLO1 35

Installing HWSSOAP1 36

Configuring XML-to-COBOL Conversion Support

for IMS SOAP Gateway 36

Prerequisites to IMS Connect XML Conversion

Support 36

Restrictions to IMS Connect XML Conversion

Support 37

Steps for Configuring IMS Connect XML

Conversion Support 37

Example Configuration Statements for XML

Conversion Support 38

JCL to Print IMS Connect RECORDER Output . . . 38

Chapter 3. IMS Connect User Message

Exit Support 39

How IMS Connect Communicates with a TCP/IP

Client 39

Format of Fixed Portion of IRM in Messages Sent

to IMS Connect 40

Format of User Portion of IRM for HWSSMPL0,

HWSSMPL1, and User-Written Message Exit

Routines 43

Output from Client Exit 47

Other IMS Connect Structures 48

How IMS Connect Communicates with an SSL

Client 49

How IMS Connect Communicates with User

Message Exits 49

Register Contents on Subroutine Entry 50

Register Contents on Subroutine Exit 50

INIT Subroutine 50

READ Subroutine 53

XMIT Subroutine 56

TERM Subroutine 57

EXER Subroutine 58

User Exit Message Description and Structures . . . 60

Input Messages from Client 60

Output Message to Client 61

IMS Connect User Message Exit (HWSIMSO0

and HWSIMSO1) 61

Sample User Message Exits (HWSSMPL0 and

HWSSMPL1) 62

IMS Connector for Java User Message Exit

(HWSJAVA0) 63

IMS Connect IMSplex Message Exits

(HWSCSLO0 and HWSCSLO1) 63

IMS SOAP Gateway Message Exit (HWSSOAP1) 64

Security Exit 64

Message Structures 65

Macros 74

Chapter 4. IMS Connect DRU Exit for

Asynchronous Output Support 77

How IMS Connect Communicates with the DRU

Exit 77

How to Use the HWSYDRU0 Exit 77

© Copyright IBM Corp. 2000, 2007 iii

||

 |
 | |
 |
 | |
 |
 | |
 |
 | |
 |
 | |

 |
 | |

 | |

Chapter 5. IMS Connect User

Initialization Exit Support 79

How IMS Connect Communicates with HWSUINIT 79

Register Contents on HWSUINIT Entry 80

Register Contents on HWSUINIT Exit 80

Chapter 6. IMS Connect IMSplex

Support 81

IMSplex Support 81

IMSplex Support Environment 81

Installing IMSplex Support 82

Chapter 7. IMS Connect Two-Phase

Commit Support 83

Overview of Two-Phase Commit Protocol 83

Distributed Two-Phase Commit Support 84

Global (XA) transaction with TCP/IP 84

Global Transaction with One-Phase Commit

Optimization 86

Local Option Two-Phase Commit Support 87

Part 2. IMS Connect Application

Programming 89

Chapter 8. Protocols 91

Transaction Restrictions and Limitations 91

Conversational Support 91

OTMA Conversational Protocols 92

IMS Connect Conversational Protocols 94

Commit Mode and Synch Level Definitions . . . 97

Purging Undeliverable Commit-Then-Send Output 98

Specifying the Purge Function For Undeliverable

Commit-Then-Send Output 99

When IMS Purges Undeliverable

Commit-Then-Send Output 99

Rerouting Commit-Then-Send Output 100

Specifying the Reroute Function For

Commit-Then-Send Output 101

Specifying a Destination for Rerouted Output 101

When IMS Reroutes Commit-Then-Send Output 102

Recoverable IMS Transactions 103

Send Only Protocol 104

Send only with acknowledgement protocol . . 104

Send only with serial delivery protocol 105

Resume Tpipe/Receive Protocol for Asynchronous

Output 105

Socket Connections 107

Persistent Sockets 108

Transaction Sockets 108

Non-Persistent Sockets 108

Setting Socket Types 108

Socket Processing for Transactions 109

Time-out intervals on input messages 110

Timer interval specifications 112

Cancelling a message timer 117

Asynchronous Output Support 118

Implementing Asynchronous Output Support 119

Managing and Controlling Asynchronous

Output Messages 120

Retrieving asynchronous output from an

alternate OTMA hold queue 126

Asynchronous Output Message Flow 127

IMS Connect Client Call Flows 127

IMS Connect dead letter queue (HWS$DLQ) . . . 132

Chapter 9. Security Support 133

RACF PassTicket Support 133

PassTicket Replay Protection Considerations . . 135

SSL Connections 135

z/OS Key Management 136

SSL Initialization 136

SSL Default Setup 139

Sample JCL for RACF-Managed SSL 140

Chapter 10. IMS Connect XML

Message Conversion 143

IMS Connect XML Converters 143

Structure of the XML Message 144

Message Conversion Example 145

Chapter 11. Ping Support 147

Chapter 12. User Message Exits for

IMS Connect 149

HWSIMSO0 and HWSIMSO1 User Message Exits 149

HWSSMPL0 and HWSSMPL1 User Message Exits 150

HWSJAVA0 User Message Exit 151

HWSCSLO0 and HWSCSLO1 User Message Exits

for Control Center 151

Part 3. IMS Connect Return and

Reason Codes 153

Chapter 13. IMS Connect Return and

Reason Codes 155

HWSSMPL0, HWSSMPL1, HWSCSLO0, and

HWSCSLO1 155

HWSSOAP1 158

HWSIMSO0 and HWSIMSO1 159

IMS Connector for Java 161

Extended Local Return and Reason Codes 163

IMS Connect Post Codes 165

XML Adapter Error Codes 166

Part 4. Appendixes 169

Appendix A. Recorder Log Record

Mapping 171

Appendix B. OTMA Headers 175

Appendix C. HWSSMPL0, HWSSMPL1,

HWSIMSO0, and HWSIMSO1 Security

Actions 189

iv IMS Connect Guide and Reference

||
|
||
|
||
||
|
||
||
||

||
||

||

||

|
||

 |
 | |

 | |

 | |

 |
 | |
 | |
 | |
 | |

 | |

 | |

Appendix D. IMS Connect JCL 197

HWSSMPL0 Sample JCL 197

HWSSMPL1 Sample JCL 198

HWSJAVA0 Sample JCL 198

HWSYDRU0 Sample JCL 199

HWSUINIT Sample JCL 199

Appendix E. Unicode Considerations 201

Message Translation 201

Input Message Format Sent by the Client 202

Output Message Format Received by the Client 202

Appendix F. Suggested TCP/IP

Settings 203

Appendix G. HWSTECL0 User Exit 205

Modifying HWSTECL0 User Exit 205

HWSTECL0 Initialization 206

Invoking HWSTECL0 for Event Recording . . . 207

Error Message Format 208

Event Types 208

Event Record Formats 212

Control Blocks and DSECTS for Event Recording 234

Event Recording Parameter List (ERPL) . . . 234

Event Interface Control Block (EICB) 235

TCP/IP Information Block (TCPIB) 235

Datastore Information Block (DSIB) 236

Security Information Block (SAFIB) 237

Variable Data Block (VDB) 238

DSECTS for Event Recording 238

Terminating HWSTECL0 239

Notices 241

Programming Interface Information 243

Trademarks 244

Bibliography 245

IMS Version 9 Library 245

Supplementary Publications 246

Publication Collections 246

Accessibility Titles Cited in This Library 246

Index 247

Contents v

||
||
||
||
||
||
||

 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

vi IMS Connect Guide and Reference

Figures

 1. System Overview 3

 2. IMS Connect Component Layout 5

 3. Simple System Configuration 16

 4. Complex System Configuration 17

 5. Example of a Configuration File for IMS

Connect BPE 26

 6. Distributed Two-Phase Commit Global

Transaction Client Flow 86

 7. Distributed One-Phase Commit Optimization

Client Flow 87

 8. Two-Phase Commit Flow for Local Option 88

 9. Send-Then-Commit, Sync Level=None Flow

for OTMA Conversational Protocols 92

10. Send-Then-Commit, Sync Level=Confirm Flow

for OTMA Conversational Protocols 93

11. Send-Then-Commit, Sync Level=None

(Transaction Terminated from Program) Flow . 94

12. Send-Then-Commit, Sync Level=None

(Transaction Terminated from Client) Flow . . 95

13. Send-Then-Commit, Sync Level=Confirm

(ACK Response) Flow 96

14. Send-Then-Commit, Sync Level=Confirm

(NAK Response) Flow 97

15. Send Only Protocol Flow 104

16. Commit-Then-Send, Receive Asynchronous

Output (Client Waits for Output) Flow . . . 106

17. Commit-Then-Send, Receive Asynchronous

Output (Output Remains in Queue) Flow . . 107

18. Non-conversational, Commit Mode=1, Synch

Level=Confirm, and ACK (Transaction Runs

to Successful Completion) 128

19. Conversational, Commit Mode=1, Synch

Level=Confirm, and ACK (Transaction Runs

to Successful Completion) 128

20. Non-conversational, Commit Mode=1, Synch

Level=Confirm, and NAK (Transaction

Terminates with a NAK from Client

Application) 128

21. Conversational, Commit Mode=1, Synch

Level=Confirm, and NAK (Transaction

Terminates with a NAK from Client

Application) 129

22. Non-conversational, Commit Mode=1, Synch

Level=Confirm, and ACK (Transaction

Terminated by Host Application Before

Successful Completion) 129

23. Conversational, Commit Mode=1, Synch

Level=Confirm, and NAK (Transaction

Terminated by Host Application) 129

© Copyright IBM Corp. 2000, 2007 vii

|
||
|
||

|
||

viii IMS Connect Guide and Reference

Tables

 1. Licensed Program Full Names and Short

Names xiv

 2. IMS Connect Exits and Descriptions 28

 3. Link-Editing Requirements 31

 4. Format of Common Fixed Portion of IRM

Prefix 40

 5. Format of User Portion of Messages for

HWSIMSO0, HWSIMSO1, HWSSMPL0, and

HWSSMPL1 Exit Routines 44

 6. Structure 1 48

 7. Structure 2 48

 8. BPE Header Layout 49

 9. Register Contents on Subroutine Entry . . . 50

 10. Register Contents on Subroutine Exit 50

 11. Contents of Parmlist Pointed to by Register 1

at INIT Subroutine Entry 51

 12. Contents of Parmlist Pointed to by Register 1

at INIT Subroutine Exit 52

 13. Contents of Parmlist Pointed to by Register 1

at READ Subroutine Entry 53

 14. Contents of Parmlist Pointed to by Register 1

at READ Subroutine Exit 54

 15. Contents of Parmlist Pointed to by Register 1

at XMIT Subroutine Entry 56

 16. Contents of Parmlist Pointed to by Register 1

at XMIT Subroutine Exit 57

 17. Contents of Parmlist Pointed to by Register 1

at TERM Subroutine Entry 57

 18. Contents of Parmlist Pointed to by Register 1

at TERM Subroutine Exit 58

 19. Contents of Parmlist Pointed to by Register 1

at EXER Subroutine Entry 58

 20. Contents of Parmlist Pointed to by Register 1

at EXER Subroutine Exit 59

 21. Input Message Structure 60

 22. Input Message Structure Returned by the Exit 60

 23. Supported Message Format from an IMS

Connector for Java Client 65

 24. Supported Message Format for Non-IMS

Connector for Java Clients 66

 25. Supported Output Message Format for

HWSIMSO0 and HWSSMPL0 Exits 68

 26. BPE Header Format 69

 27. Output Message Format from IMS Connect to

the Client 70

 28. Output Message Format from IMS Connect to

the Exit 71

 29. Request Mod Message Output Message Format 72

 30. Complete Status Message Output Message

Format 72

 31. Request Status Message Output Message

Format 72

 32. Output Message Format Containing RMM,

DATA, and CSM 73

 33. Output Message Format Containing Output

Data and CSM Only 74

 34. Output Message Format Sent to the IMS

Control Center 74

 35. Register Settings and HWSYDRU Actions 78

 36. Register Contents on HWSUINIT Entry 80

 37. Register Contents on HWSUINIT Exit 80

 38. IRM_SOCT Flags 108

 39. OMUSR_FLAG1 Flags 109

 40. IRM_TIMER values in one one-hundredth of

a second 112

 41. IRM_TIMER values in five one-hundredths of

a second 113

 42. IRM_TIMER time values in seconds 114

 43. IRM_TIMER time values in minutes 116

 44. Additional IRM_TIMER options 117

 45. IMS Connect Client Message Protocol

Sequence for IMS DFS Messages and IMS

Command Output: Persistent Socket 130

 46. IMS Connect Client Message Protocol

Sequence for IMS DFS Messages and IMS

Command Output: Transaction Socket . . . 130

 47. Information Reason Codes for Commit

Mode=1, Synch Level=Confirm 131

 48. Return Codes for HWSSMPL0 and

HWSSMPL1 155

 49. Reason Codes for HWSSMPL0 and

HWSSMPL1 156

 50. Return Codes for HWSSOAP1 158

 51. Reason Codes for HWSSOAP1 158

 52. Return Codes for HWSIMSO0 and

HWSIMSO1 159

 53. Reason Codes for HWSIMSO0 and

HWSIMSO1 160

 54. Return Codes for OTMA 162

 55. Reason Codes for OTMA 162

 56. Extended Local Return Codes 164

 57. Extended Local Reason Codes 164

 58. IMS Connect Post Codes 165

 59. XML Adapter Error Codes 166

 60. HWS0MCTL DSECT - OTMA Control Header

(Control Data Common Section for All

Messages) 175

 61. HWS0MHDR DSECT - OTMA State Data

Header

(State Data Common Section for Server

Available and Client Bid Command Format) . 179

 62. HWS0MHDR DSECT - OTMA State Data

Header (State Data Common Section for

resume output for single named TPIPE for

the asynchronous option of NO OPTION

selection) 180

 63. HWS0MHDR DSECT - OTMA State Data

Header (State Data Common Section for

resume output for single named TPIPE for

options of NOAUTO, SINGLE, SINGLE with

WAIT, and AUTO) 181

© Copyright IBM Corp. 2000, 2007 ix

 | |
 | |

 | |

64. HWS0MHDR DSECT - OTMA State Data

Header (State Data Common Section for

transaction messages) 181

 65. HWS0MSEC DSECT - OTMA Security Data

Header

(Security Data Common Section for All

Messages) 183

 66. HWSECUDS DSECT - OTMA USERID

Definition

(Security Data USERID Section for All

Messages) 184

 67. HWSECGDS DSECT - OTMA GROUPID

Definition

(Security Data GROUPID Section for All

Messages) 184

 68. HWSECFDS DSECT - OTMA RACF UTOKEN

Definition

(Security Data UTOKEN Section for All

Messages) 185

 69. HWSOMUSR DSECT - User Data Header

(User Data Common Section for All

Messages) 185

 70. USERID Results If Security Exit Not Called 189

 71. GROUPID Results If Security Exit Not Called 189

 72. Password Results If Security Exit Not Called 189

 73. USERID Results If Security Exit Called;

Returns Blank or Non-blank USERID . . . 189

 74. GROUPID Results If Security Exit Called;

Returns Non-blank USERID 190

 75. GROUPID Results If Security Exit Called;

Returns Blank USERID 190

 76. Password Results Regardless of Whether

Security Exit Called 191

 77. IMS Connect Error Actions Taken Based on

RACROUTE Call Parameters (RACF=Y) . . 191

 78. IMS Connect Error Actions Taken for

RACROUTE Call Failure or OTMA Header

Data (RACF=Y) 192

 79. IMS Connect Error Actions Taken Based on

RACROUTE Call Parameters (RACF=N) . . 193

 80. IMS Connect Error Actions Taken for

RACROUTE Call Failure or OTMA Header

Data (RACF=N) 194

 81. Input Message Structure - message sent by

client 202

 82. Output Message Structure - message received

by client 202

 83. Registers at entry to HWSTECL0 206

 84. Contents of Event Interface Control Block

(EICB) Pointed to by HWSTECL0 206

 85. Registers at return from HWSTECL0 207

 86. Registers at Event Recording Entry 207

 87. Registers at Return from Event Recording 207

 88. Error Message Format 208

 89. Keys Associated with Events 208

 90. Single Process Events 209

 91. Multi-process Events 210

 92. Connect Region Initialization Event 212

 93. Connect Region Termination Event 212

 94. Support Task Created Event 213

 95. Support Task Terminating Event 213

 96. Begin Initialize API Event 214

 97. End Initialize API Event 214

 98. Begin Bind Socket Event 214

 99. End Bind Socket Event 215

100. Listen on Socket Event 215

101. Begin Accept Socket Event 215

102. End Accept Socket Event 216

103. Begin Initialization of Message Exits 216

104. Datastore Available Event 216

105. Datastore Unavailable Event 216

106. TMEMBER Joins XCF Group Event 217

107. TMEMBER Leaves XCF Group Event 217

108. Begin SCI Registration Event 217

109. End SCI Registration Event 218

110. Begin SCI De-registration Event 218

111. End SCI De-registration Event 218

112. Recorder Trace DCB Opened Event 219

113. Recorder Trace DCB Pre-close Event 219

114. Message Exit INIT Call Event 219

115. Message Exit TERM Call Event 219

116. Begin Secure Environment Open Event 220

117. End Secure Environment Open Event 220

118. Begin Secure Environment Close Event 221

119. End Secure Environment Close Event 221

120. Begin Local Port Setup Event 221

121. End Local Port Setup Event 221

122. Begin RRS Connect Event 222

123. End RRS Connect Event 222

124. List In-doubt Context Event 222

125. Begin RRS Disconnect Event 223

126. End RRS Disconnect Event 223

127. Begin Close Socket Event 223

128. End Close Socket Event 224

129. Prepare Socket Read Event 224

130. Message Exit Called for READ, XMIT, or

EXER Event 224

131. Message Exit Return for READ, XMIT, or

EXER Event. 225

132. Begin SAF Request Event 225

133. End SAF Request Event 226

134. Message Sent to OTMA Event 226

135. Message Received From OTMA Event 226

136. Message Sent to SCI Event 226

137. Message Received From SCI Event 227

138. OTMA Time-out Event 227

139. De-allocate Session Event 227

140. Session Error Event 228

141. Trigger Event 228

142. Read Socket Event 229

143. Write Socket Event 229

144. Local Client Connect Event 229

145. Local Message Send Event 229

146. Local Message Receive 230

147. Local Message Send/Receive Event 230

148. Local Client Disconnect Event 230

149. Begin Create Context Event 230

150. End Create Context Event 231

151. Begin RRS Prepare Event 231

152. End RRS Prepare Event 231

153. Begin RRS Commit/Abort Event 232

154. End RRS Commit/Abort Event 232

x IMS Connect Guide and Reference

||
|
||
||
||
||
||
||
||
||
||
||
||
||

 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 |
 | |
 |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |
 | |

155. Begin Secure Environment Select Event 233

156. End Secure Environment Select Event 233

157. Message Received From OTMA Event in

Response to RESUME TPIPE Call 234

158. Event Recording Parameter List (ERPL)

Pointed to by HWSTECL0 234

159. EICB Parameter List Contents 235

160. TCP/IP Information Block (TCPIB) Contents 236

161. Datastore Information Block (DSIB) Contents 237

162. Security Information Block (SAFIB) Contents 237

163. Variable Data Block (VDB) Contents 238

164. Event Recording Macros Shipped with IMS

Connect 238

Tables xi

||
||
|
||
|
||
||

 | |
 | |
 | |
 | |
 |
 | |

xii IMS Connect Guide and Reference

About This Book

IMS Version 9 provides an integrated IMS™ Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

This book is designed to help programmers, operators, and system support

personnel perform these tasks:

v Plan for and design the installation of IMS Connect.

v Install and operate IMS Connect.

v Diagnose and recover from IMS Connect system problems.

v Write an IMS Connect client.

v Use IMS Connect with IMS Connector for Java™.

This information is available as part of the Information Management Software for

z/OS® Solutions Information Center at http://publib.boulder.ibm.com/infocenter/
imzic. A PDF version of this information is available in the information center.

Prerequisite Knowledge

Before using this book, you may need to understand:

v Basic IMS concepts

v Basic Open Transaction Manager Access (OTMA) concepts

v The IMS environment

v TCP/IP configuration concepts

v Basic OS/390® MVS™ Extended Coupling Facility (XCF) concepts

v Basic RACF® (or equivalent product) concepts

v Basic Secure Sockets Layer (SSL) concepts

For a list of references to related publications, refer to the “Bibliography” on page

245.

Summary of Contents

This book has three parts.

v Part 1, “IMS Connect Administration,” on page 1 contains information on how to

set up, install, and operate IMS Connect.

v Part 2, “IMS Connect Application Programming,” on page 89 provides guidelines

for how to write an IMS Connect client and how to diagnose and recover from

system problems.

v Part 3, “IMS Connect Return and Reason Codes,” on page 153 describes the IMS

Connect error codes, abend codes, and their associated messages.

© Copyright IBM Corp. 2000, 2007 xiii

IBM Product Names Used in This Information

In this information, the licensed programs shown in Table 1 are referred to by their

short names.

 Table 1. Licensed Program Full Names and Short Names

Licensed program full name Licensed program short name

IBM® Application Recovery Tool for IMS and

DB2®

Application Recovery Tool

IBM CICS® Transaction Server for OS/390 CICS

IBM CICS Transaction Server for z/OS CICS

IBM DB2 Universal Database™ DB2 Universal Database

IBM DB2 Universal Database for z/OS DB2 UDB for z/OS

IBM Enterprise COBOL for z/OS Enterprise COBOL

IBM Enterprise COBOL for z/OS and

OS/390

Enterprise COBOL

IBM Enterprise PL/I for z/OS and OS/390 Enterprise PL/I

IBM High Level Assembler for MVS & VM &

VSE

High Level Assembler

IBM IMS Advanced ACB Generator IMS Advanced ACB Generator

IBM IMS Batch Backout Manager IMS Batch Backout Manager

IBM IMS Batch Terminal Simulator IMS Batch Terminal Simulator

IBM IMS Buffer Pool Analyzer IMS Buffer Pool Analyzer

IBM IMS Command Control Facility for

z/OS

IMS Command Control Facility

IBM IMS Connect for z/OS IMS Connect

IBM IMS Connector for Java IMS Connector for Java

IBM IMS Database Control Suite IMS Database Control Suite

IBM IMS Database Recovery Facility for

z/OS

IMS Database Recovery Facility

IBM IMS Database Repair Facility IMS Database Repair Facility

IBM IMS DataPropagator™ for z/OS IMS DataPropagator

IBM IMS DEDB Fast Recovery IMS DEDB Fast Recovery

IBM IMS Extended Terminal Option Support IMS ETO Support

IBM IMS Fast Path Basic Tools IMS Fast Path Basic Tools

IBM IMS Fast Path Online Tools IMS Fast Path Online Tools

IBM IMS Hardware Data

Compression-Extended

IMS Hardware Data Compression-Extended

IBM IMS High Availability Large Database

(HALDB) Conversion Aid for z/OS

IBM IMS HALDB Conversion Aid

IBM IMS High Performance Change

Accumulation Utility for z/OS

IMS High Performance Change

Accumulation Utility

IBM IMS High Performance Load for z/OS IMS HP Load

IBM IMS High Performance Pointer Checker

for OS/390

IMS HP Pointer Checker

xiv IMS Connect Guide and Reference

Table 1. Licensed Program Full Names and Short Names (continued)

Licensed program full name Licensed program short name

IBM IMS High Performance Prefix Resolution

for z/OS

IMS HP Prefix Resolution

IBM z/OS Language Environment® Language Environment

IBM Tivoli® NetView® for z/OS Tivoli NetView for z/OS

IBM WebSphere® Application Server for

z/OS and OS/390

WebSphere Application Server for z/OS

IBM WebSphere MQ for z/OS WebSphere MQ

IBM WebSphere Studio Application

Developer Integration Edition

WebSphere Studio

IBM z/OS z/OS

IBM z/OS C/C++ C/C++

How to Read Syntax Diagrams

The following rules apply to the syntax diagrams that are used in this information:

v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line. The following conventions are used:

– The >>--- symbol indicates the beginning of a syntax diagram.

– The ---> symbol indicates that the syntax diagram is continued on the next

line.

– The >--- symbol indicates that a syntax diagram is continued from the

previous line.

– The --->< symbol indicates the end of a syntax diagram.
v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item

optional_item
 ��

If an optional item appears above the main path, that item has no effect on the

execution of the syntax element and is used only for readability.

��
 optional_item

required_item

��

v If you can choose from two or more items, they appear vertically, in a stack.

If you must choose one of the items, one item of the stack appears on the main

path.

�� required_item required_choice1

required_choice2
 ��

If choosing one of the items is optional, the entire stack appears below the main

path.

About This Book xv

�� required_item

optional_choice1

optional_choice2

 ��

If one of the items is the default, it appears above the main path, and the

remaining choices are shown below.

��

required_item
 default_choice

optional_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be

repeated.

��

required_item

�

repeatable_item

��

If the repeat arrow contains a comma, you must separate repeated items with a

comma.

��

required_item

�

 ,

repeatable_item

��

A repeat arrow above a stack indicates that you can repeat the items in the

stack.

v Sometimes a diagram must be split into fragments. The syntax fragment is

shown separately from the main syntax diagram, but the contents of the

fragment should be read as if they are on the main path of the diagram.

�� required_item fragment-name ��

fragment-name:

 required_item

optional_item

v In IMS, a b symbol indicates one blank position.

v Keywords, and their minimum abbreviations if applicable, appear in uppercase.

They must be spelled exactly as shown. Variables appear in all lowercase italic

letters (for example, column-name). They represent user-supplied names or

values.

v Separate keywords and parameters by at least one space if no intervening

punctuation is shown in the diagram.

v Enter punctuation marks, parentheses, arithmetic operators, and other symbols,

exactly as shown in the diagram.

v Footnotes are shown by a number in parentheses, for example (1).

xvi IMS Connect Guide and Reference

Accessibility Features for IMS Version 9

Accessibility features help a user who has a physical disability, such as restricted

mobility or limited vision, to use information technology products successfully.

Accessibility Features

The following list includes the major accessibility features in z/OS products,

including IMS Version 9. These features support:

v Keyboard-only operation.

v Interfaces that are commonly used by screen readers and screen magnifiers.

v Customization of display attributes such as color, contrast, and font size.

Note: The Information Management Software for z/OS Solutions Information

Center (which includes information for IMS Version 9) and its related

publications are accessibility-enabled for the IBM Home Page Reader. You

can operate all features by using the keyboard instead of the mouse.

Keyboard Navigation

You can access IMS Version 9 ISPF panel functions by using a keyboard or

keyboard shortcut keys.

For information about navigating the IMS Version 9 ISPF panels using TSO/E or

ISPF, refer to the z/OS TSO/E Primer, the z/OS TSO/E User’s Guide, and the z/OS

ISPF User’s Guide. These guides describe how to navigate each interface, including

the use of keyboard shortcuts or function keys (PF keys). Each guide includes the

default settings for the PF keys and explains how to modify their functions.

Related Accessibility Information

Online documentation for IMS Version 9 is available in the Information

Management Software for z/OS Solutions Information Center.

IBM and Accessibility

See the IBM Accessibility Center at www.ibm.com/able for more information about

the commitment that IBM has to accessibility.

How to Send Your Comments

Your feedback is important in helping us provide the most accurate and highest

quality information. If you have any comments about this or any other IMS

information, you can take one of the following actions:

v Click the Feedback link located at the bottom of every page in the Information

Management Software for z/OS Solutions Information Center. The information

center can be found at http://publib.boulder.ibm.com/infocenter/imzic.

v Go to the IMS Library page at www.ibm.com/software/data/ims/library.html

and click the Library Feedback link, where you can enter and submit comments.

v Send your comments by e-mail to imspubs@us.ibm.com. Be sure to include the

title, the part number of the title, the version of IMS, and, if applicable, the

specific location of the text on which you are commenting (for example, a page

number in the PDF or a heading in the Information Center).

About This Book xvii

xviii IMS Connect Guide and Reference

Summary of Changes

This section summarizes the significant improvements or enhancements for IMS

Connect and refers you to relevant sections of this book for more information.

Changes to the Current Edition of This Book for IMS Version 9

This edition includes technical and editorial changes.

This edition documents the following enhancements to IMS Connect:

v Further enhancements to the support for the purging and rerouting of

undeliverable commit-mode-0 I/O PCB output provided by the following

APARs:

– PK12013

– PK18555

– PK22331

See “Purging Undeliverable Commit-Then-Send Output” on page 98 and

“Rerouting Commit-Then-Send Output” on page 100.

v XML-to-COBOL data conversion support provided by IMS Version 9 APARs

PK24912 and PK29938. See the following sections:

– “ADAPTER configuration statement” on page 15

– “Configuration examples for IMS Connect” on page 16

– “EXITMBR” on page 21

– “Installing HWSSOAP1” on page 36

– “Configuring XML-to-COBOL Conversion Support for IMS SOAP Gateway”

on page 36

– Chapter 10, “IMS Connect XML Message Conversion,” on page 143
v OTMA super member support provided by PK10911. See the SMEMBER

parameter in the “HWS configuration statement” on page 10.

v A new event number 88 recorded by HWSTECL0 upon receipt of a message

from the OTMA asynchronous tpipe hold queue in response to a RESUME

TPIPE call, as provided by APAR PK32922. See Appendix G, “HWSTECL0 User

Exit,” on page 205.

v New options for the send only protocol provided by APAR PK23757. See the

new information in the following topics:

– “Send only with acknowledgement protocol” on page 104

– “Send only with serial delivery protocol” on page 105

– “Format of User Portion of IRM for HWSSMPL0, HWSSMPL1, and

User-Written Message Exit Routines” on page 43

– “Output Message From Message Exit” on page 71

For the purposes of consistency and maintainability across the IMS library, the

following chapters have been moved:

v The chapter “IMS Connect Commands” now appears in the IMS Version 9:

Command Reference.

v The chapter “IMS Connect z/OS Commands” now appears in the IMS Version 9:

Command Reference.

© Copyright IBM Corp. 2000, 2007 xix

|

|
|
|

|

|

|

|
|

|
|

|

|

|

|

|
|

|

|
|

|
|
|
|

|
|

|

|

|
|

|

|
|

|
|

|
|

v The chapter “IMS Connect Error Codes and Messages” now appears in the IMS

Version 9: Messages and Codes, Volume 1.

Changes to This Book for IMS Version 9

For IMS Connect, the improvements and enhancements include:

v Purging undeliverable commit-mode-0 I/O PCB output

v Rerouting undeliverable commit-mode-0 I/O PCB output

v Cancel timer support

v Commit mode 0 persistent socket support

v RESUME_TPIPE single with wait option

v The MAXSOC= parameter has changed and requires APAR PQ90051

The following chapters in this book have been modified to reflect new or changed

product features:

v Chapter 2, “IMS Connect Definition and Tailoring,” on page 7

v Chapter 12, “User Message Exits for IMS Connect,” on page 149

v Chapter 8, “Protocols,” on page 91

v Chapter 9, “Security Support,” on page 133

v Chapter 13, “IMS Connect Return and Reason Codes,” on page 155

The following chapters have been moved to the IMS Command Reference:

v IMS Connect Commands

v IMS Connect MVS Commands

IMS Connect Version 9 is the final release of IMS Connect user message exits,

HWSIMSO0 and HWSIMSO1. These two user message exits will not be available

in any future IMS Connect release.

Library Changes for IMS Version 9

Changes to the IMS Library for IMS Version 9 include the addition of one title, a

change of one title, organizational changes, and a major terminology change.

Changes are indicated by a vertical bar (|) to the left of the changed text.

The IMS Version 9 information is now available in the Information Management

Software for z/OS Solutions Information Center, which is available at

http://publib.boulder.ibm.com/infocenter/imzic. The Information Management

Software for z/OS Solutions Information Center provides a graphical user interface

for centralized access to the product information for IMS, IMS Tools, DB2

Universal Database (UDB) for z/OS, DB2 Tools, and DB2 Query Management

Facility (QMF™).

New and Revised Titles

The following list details the major changes to the IMS Version 9 library:

v IMS Version 9: IMS Connect Guide and Reference

The library includes new information: IMS Version 9: IMS Connect Guide and

Reference. This information is available in softcopy format only, as part of the

Information Management Software for z/OS Solutions Information Center, and

in PDF and BookManager® formats.

xx IMS Connect Guide and Reference

|
|

IMS Version 9 provides an integrated IMS Connect function, which offers a

functional replacement for the IMS Connect tool (program number 5655-K52). In

this information, the term IMS Connect refers to the integrated IMS Connect

function that is part of IMS Version 9, unless otherwise indicated.

v The information formerly titled IMS Version 8: IMS Java User’s Guide is now

titled IMS Version 9: IMS Java Guide and Reference. This information is available in

softcopy format only, as part of the Information Management Software for z/OS

Solutions Information Center, and in PDF and BookManager formats.

v To complement the IMS Version 9 library, a retail book, An Introduction to IMS by

Dean H. Meltz, Rick Long, Mark Harrington, Robert Hain, and Geoff Nicholls

(ISBN # 0-13-185671-5), is available from IBM Press. Go to the IMS Web site at

www.ibm.com/ims for details.

Organizational Changes

Organization changes to the IMS Version 9 library include changes to:

v IMS Version 9: Customization Guide

v IMS Version 9: IMS Connect Guide and Reference

v IMS Version 9: IMS Java Guide and Reference

v IMS Version 9: Messages and Codes, Volume 1

v IMS Version 9: Utilities Reference: System

A new appendix has been added to the IMS Version 9: Customization Guide that

describes the contents of the ADFSSMPL (also known as SDFSSMPL) data set.

The IMS Connect messages that were in IMS Version 9: IMS Connect Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

The IMS Connect commands that were in IMS Version 9: IMS Connect Guide and

Reference have moved to IMS Version 9: Command Reference.

The chapter titled ″DLIModel Utility″ has moved from IMS Version 9: IMS Java

Guide and Reference to IMS Version 9: Utilities Reference: System.

The DLIModel utility messages that were in IMS Version 9: IMS Java Guide and

Reference have moved to IMS Version 9: Messages and Codes, Volume 1.

To ease the transition of your security support from the Security Maintenance

Utility (SMU) to RACF, new SMU to RACF conversion utilities have been

introduced. These utilities are documented in a new part in the IMS Version 9:

Utilities Reference: System.

Terminology Changes

IMS Version 9 introduces new terminology for IMS commands:

type-1 command

A command, generally preceded by a leading slash character, that can be

entered from any valid IMS command source. In IMS Version 8, these

commands were called classic commands.

type-2 command

A command that is entered only through the OM API. Type-2 commands

are more flexible than type-2 commands and can have a broader scope. In

IMS Version 8, these commands were called IMSplex commands or

enhanced commands.

Summary of Changes xxi

|
|

|
|

|
|

|
|
|
|

xxii IMS Connect Guide and Reference

Part 1. IMS Connect Administration

Chapter 1. Overview of IMS Connect 3

Introduction to IMS Connect 3

IMS Connect Components 4

Chapter 2. IMS Connect Definition and Tailoring . 7

Defining the IMS Connect Environment 8

Configuring IMS Connect 8

Authorizing IMS Connect to the APF 8

Updating the MVS PPT 9

Creating the IMS Connect Configuration

Member 9

Enabling Support for Internet Protocol Version

6 18

Defining IMS Connect Security 19

Configuring the IMS Connect Base Primitive

Environment (BPE) 20

Changing the IMS Connect BPE Configuration

Parameter PROCLIB Member 20

Formatting Incore Trace Tables 26

Setting IMS Connect Allocations 26

Invoking IMS Connect 27

Customizing IMS Connect 28

Installing HWSJAVA0, HWSUINIT, HWSYDRU0,

HWSSMPL0, and HWSSMPL1 30

Modifying HWSJAVA0, HWSUINIT, HWSSMPL0,

HWSSMPL1, and HWSYDRU0 32

Modifying User Message Exits to Provide Trusted

User Support 33

Modifying HWSSMPL0 and HWSSMPL1 for

PassTicket 34

Modifying HWSIMSO0 and HWSIMSO1 . . . 34

Installing HWSCSLO0 and HWSCSLO1 35

Installing HWSSOAP1 36

Configuring XML-to-COBOL Conversion Support

for IMS SOAP Gateway 36

Prerequisites to IMS Connect XML Conversion

Support 36

Restrictions to IMS Connect XML Conversion

Support 37

Steps for Configuring IMS Connect XML

Conversion Support 37

Example Configuration Statements for XML

Conversion Support 38

JCL to Print IMS Connect RECORDER Output . . . 38

Chapter 3. IMS Connect User Message Exit

Support 39

How IMS Connect Communicates with a TCP/IP

Client 39

Format of Fixed Portion of IRM in Messages Sent

to IMS Connect 40

Format of User Portion of IRM for HWSSMPL0,

HWSSMPL1, and User-Written Message Exit

Routines 43

Output from Client Exit 47

Other IMS Connect Structures 48

How IMS Connect Communicates with an SSL

Client 49

How IMS Connect Communicates with User

Message Exits 49

Register Contents on Subroutine Entry 50

Register Contents on Subroutine Exit 50

INIT Subroutine 50

Contents of Parmlist Pointed to by Register 1

at INIT Subroutine Entry 50

Contents of Parmlist Pointed to by Register 1

at INIT Subroutine Exit 52

READ Subroutine 53

Contents of Parmlist Pointed to by Register 1

at READ Subroutine Entry 53

Contents of Parmlist Pointed to by Register 1

at READ Subroutine Exit 54

XMIT Subroutine 56

Contents of Parmlist Pointed to by Register 1

at XMIT Subroutine Entry 56

Contents of Parmlist Pointed to by Register 1

at XMIT Subroutine Exit 57

TERM Subroutine 57

Contents of Parmlist Pointed to by Register 1

at TERM Subroutine Entry 57

Contents of Parmlist Pointed to by Register 1

at TERM Subroutine Exit 58

EXER Subroutine 58

Contents of Parmlist Pointed to by Register 1

at EXER Subroutine Entry 58

Contents of Parmlist Pointed to by Register 1

at EXER Subroutine Exit 59

User Exit Message Description and Structures . . . 60

Input Messages from Client 60

Output Message to Client 61

IMS Connect User Message Exit (HWSIMSO0

and HWSIMSO1) 61

Sample User Message Exits (HWSSMPL0 and

HWSSMPL1) 62

IMS Connector for Java User Message Exit

(HWSJAVA0) 63

IMS Connect IMSplex Message Exits

(HWSCSLO0 and HWSCSLO1) 63

IMS SOAP Gateway Message Exit (HWSSOAP1) 64

Security Exit 64

Message Structures 65

Input Message From Client and Passed to Exit 65

Input Message Returned From Message Exit 68

Output Message From IMS Connect to Client 70

Output Message From Message Exit 71

Macros 74

Chapter 4. IMS Connect DRU Exit for

Asynchronous Output Support 77

How IMS Connect Communicates with the DRU

Exit 77

How to Use the HWSYDRU0 Exit 77

© Copyright IBM Corp. 2000, 2007 1

||
|
||
|
||
|
||
|
||
|
||

|
||

 | |

Chapter 5. IMS Connect User Initialization Exit

Support 79

How IMS Connect Communicates with HWSUINIT 79

Register Contents on HWSUINIT Entry 80

Register Contents on HWSUINIT Exit 80

Chapter 6. IMS Connect IMSplex Support . . . 81

IMSplex Support 81

IMSplex Support Environment 81

Installing IMSplex Support 82

Chapter 7. IMS Connect Two-Phase Commit

Support 83

Overview of Two-Phase Commit Protocol 83

Distributed Two-Phase Commit Support 84

Global (XA) transaction with TCP/IP 84

Global Transaction with One-Phase Commit

Optimization 86

Local Option Two-Phase Commit Support 87

2 IMS Connect Guide and Reference

Chapter 1. Overview of IMS Connect

This chapter provides an overview of the IMS Connect product and how it works,

and describes each of the IMS Connect components.

In this chapter:

v “Introduction to IMS Connect”

v “IMS Connect Components” on page 4

Introduction to IMS Connect

IMS Connect provides high performance communications for IMS between one or

more TCP/IP or local OS/390 or z/OS clients and one or more IMS systems. IMS

Connect provides the following features:

v Commands to manage the communication environment.

v Assistance for workload balancing.

v Reduced design and coding efforts for client applications.

v Easier e-business access to IMS applications and operations with advanced

security and transactional integrity.

v Support for XML-to-COBOL data conversion for IMS SOAP Gateway input

messages, which eliminates the need to create or modify IMS application

programs to process XML.

As shown in Figure 1, IMS Connect enables TCP/IP or local OS/390 or z/OS

clients to exchange messages through the IMS Open Transaction Manager Access

(OTMA) facility or to exchange commands through the IMS Structured Call

Interface (SCI) to the IMS Operations Manager (OM).

IMS Connect runs on an OS/390 or z/OS platform. For environmental details, see

Chapter 2, “IMS Connect Definition and Tailoring,” on page 7.

 IMS Connect performs router functions between TCP/IP clients and local option

clients with datastores and IMSplex resources. Request messages received from

TCP/IP clients, using TCP/IP connections, or local option clients, using the MVS

Program Call (PC), are passed to a datastore through cross-system coupling facility

Figure 1. System Overview

© Copyright IBM Corp. 2000, 2007 3

|
|
|

(XCF) sessions. IMS Connect receives response messages from the datastore and

then passes them back to the originating TCP/IP or local option clients.

IMS Connect supports TCP/IP clients communicating with socket calls, but it can

also support any TCP/IP client that communicates with a different input data

stream format. User-written message exits can execute in the IMS Connect address

space to convert customer message format to OTMA message format before IMS

Connect sends the message to IMS. The user-written message exits also convert

OTMA message format to customer message format before sending a message back

to IMS Connect. IMS Connect then sends output to the client.

If the datastore goes down, the status of the datastore is sent to IMS Connect from

IMS OTMA through XCF. When the datastore is brought back up and restarted,

IMS Connect is notified and automatically reconnects to the datastore. You do not

need to manually reconnect to the datastore. (Note: IMS Connect will automatically

reconnect only if it was originally connected to the datastore before the datastore

went down.)

In addition to TCP/IP client communications, IMS Connect also supports local

communication through the “local option”. This option provides a non-socket

(non-TCP/IP) communication protocol for use between IBM WebSphere and IMS

Connect in the OS/390 environment. Servlets that run in IBM WebSphere

Application Server (WAS) for z/OS and use IMS Connector for Java, can

communicate with IMS Connect through the local option.

IMS Connect also supports TCP/IP connections from the DB2 V8.1 UDB Control

Center to exchange IMS Control Center commands and responses. A single IMS

Connect can support communication between the IMS Control Center and any IMS

within the sysplex.

Requirement: To use local option client communications, both IMS Connect and

the IBM WebSphere instance where IMS Connector for Java is running must reside

in the same MVS image.

Restriction: Local option client communications are supported only through IMS

Connector for Java and the IMS Connect HWSJAVA0 user message exit.

IMS Connect supports IMS Version 7 and IMS Version 8. For more information

about IMS Connect and IMS coexistence, see IMS Version 9: Release Planning Guide.

IMS Connect Components

As shown in Figure 2 on page 5, IMS Connect consists of eleven core components.

These eleven components are:

v Client communication component (CCC)

The Client communication component processes communication requests

between the front-end driver(s) and the back-end driver(s).

v Command component (CMD)

The command component processes commands received from the MVS console

operator. For details of these commands, see IMS Version 9: Command Reference.

v Datastore communication component (DCC)

The datastore communication component processes communication requests

between the back-end driver(s) and the front-end driver(s).

v Environment component (EVC)

Introduction

4 IMS Connect Guide and Reference

The environment component provides IMS Connect startup and termination

services. The EVC loads IMS Connect modules, tables, and required storage

areas; loads and calls the user message exits and user initialization exits; and

terminates IMS Connect.

v IMS Connect Base Primitive Environment (IMS Connect BPE)

The IMS Connect BPE component provides common system services to all IMS

Connect components.

v IMSplex communications component (ICC)

The IMSplex communications component processes communication requests

between the front-end TIDC driver and the back-end IPDC driver.

v IMSplex driver (IPDC)

The IMSplex driver, which is a back-end driver, enables IMS Connect to

communicate with IMS by using the IMS SCI connection.

v Local option communication component (LOCC)

The local option communication component processes communication requests

between the front-end PCDC driver and the back-end drivers, OTDC and IPDC.

v Local option driver (PCDC)

The local option driver, which is a front-end driver, provides the mechanism to

communicate with clients by using local option, which is a non-socket

communications protocol.

v OTMA driver (OTDC)

The OTMA driver, which is a back-end driver, provides the mechanism to

communicate with the IMS datastores by using an XCF connection to IMS

OTMA.

v TCP/IP driver (TIDC)

The TCP/IP driver, which is a front-end driver, provides the mechanism to

communicate with clients by using a TCP/IP Sockets connection to the clients.

Figure 2 displays the layout of each IMS Connect component.

 IMS Connect uses the driver components (TIDC, PCDC, IPDC, and OTDC) to

isolate the core components from the communication software. The TCP/IP driver

is used to communicate with TCP/IP clients using the TCP/IP communications

Figure 2. IMS Connect Component Layout

Components

Chapter 1. Overview of IMS Connect 5

protocol. The local option driver (PCDC) is used to communicate with the local

option clients. The IMS OTMA driver is used to communicate with the datastores

(IMSs) using the IMS OTMA communications protocol. The IMSplex driver is used

to communicate with IMS Operations Manager (OM) using SCI. Communication

between components takes place using the call interface service. The call interface

provides the encapsulation and isolation of structures between the components.

Each IMS Connect component provides its own set of functions, which it registers

with the call interface. When a component requires that a function be performed

by another component, the first component calls the call interface using the

following parameters:

v Component name to which the request is to be forwarded

v Function the component is to perform

v Parameters required for the function

The call interface uses a function work element (FWE) to carry information

between components.

The IMS Connect Base Primitive Environment (IMS Connect BPE) is a common

system service base upon which IMS Connect is built. IMS Connect initializes the

IMS Connect BPE in the IMS Connect address space. The IMS Connect BPE

provides IMS Connect with these services:

v Environment

v Storage

v Serialization

v Tracing

Components

6 IMS Connect Guide and Reference

Chapter 2. IMS Connect Definition and Tailoring

This chapter describes the tasks of defining and tailoring IMS Connect. It provides

detailed information about configuring and customizing the IMS Connect

environment, as well as guidelines and procedures for using and invoking IMS

Connect.

The IMS Connect package provides the following components that enable TCP/IP

clients to exchange messages with IMS for transaction processing and exchange

IMS commands with IMS Operations Manager for command processing. The two

components also enable z/OS WebSphere clients to exchange messages with IMS:

IMS Connect

A z/OS application program that provides the following services:

v Communication to TCP/IP clients using TCP/IP connections

v Communication to IMS using XCF connections to OTMA

v Communication to z/OS WebSphere clients using Program Call Interface

v Communication to IMS using IMS Structure Call Interface (SCI)

connections to OM

IMS Connect BPE

A system-service component that supports IMS Connect.

In addition to these two components (which include the eleven core components

that constitute the IMS Connect application program), the following are included

in the IMS Connect package:

v Sample user message exits: HWSSMPL0, HWSSMPL1, HWSJAVA0, HWSUINIT

and HWSYDRU0.

v IMSplex message exits: HWSCSLO0 and HWSCSLO1. These Control Center user

message exits are provided.

v The IMS SOAP Gateway message exit HWSSOAP1, which is used by the

XML-to-COBOL data conversion function of IMS Connect.

v The files HWSIMSCB, HWSIMSEA, HWSEXPRM, HWSOMPFX, HWSXIB, and

HWSXIBDS, which are required in order to use the sample IMS Connect exits.

v Several files are included for the IMS Connect Extensions (event recording)

support. See Appendix G, “HWSTECL0 User Exit,” on page 205 for a list of the

files.

In this chapter:

v “Defining the IMS Connect Environment” on page 8

v “Setting IMS Connect Allocations” on page 26

v “Invoking IMS Connect” on page 27

v “Customizing IMS Connect” on page 28

v “Configuring XML-to-COBOL Conversion Support for IMS SOAP Gateway” on

page 36

v “JCL to Print IMS Connect RECORDER Output” on page 38

© Copyright IBM Corp. 2000, 2007 7

|
|

Defining the IMS Connect Environment

This section describes how to prepare the environment for IMS Connect. To use

this information, you need a working knowledge of IMS transaction processing,

RACF, IMS OTMA, and TCP/IP.

As the following IMS Connect startup JCL statements illustrate, both IMS Connect

and IMS Connect BPE have configuration members:

//HWS PROC RGN=4096K,SOUT=A,

// BPECFG=BPECFGHT,

// HWSCFG=HWSCFG00

//*

//***

//* BRING UP AN IMS CONNECT *

//***

//STEP1 EXEC PGM=HWSHWS00,REGION=&RGN,TIME=1440,

// PARM=’BPECFG=&BPECFG,HWSCFG=&HWSCFG’

//STEPLIB DD DSN=SDFSRESL,DISP=SHR

// DD DSN=SDFSRESL,DISP=SHR

// DD DSN=CEE.SCEERUN,UNIT=SYSDA,DISP=SHR

// DD DSN=SYS1.CSSLIB,UNIT=SYSDA,DISP=SHR

// DD DSN=GSK.SGSKLOAD,UNIT=SYSDA,DISP=SHR

//PROCLIB DD DSN=USER.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//HWSRCORD DD DSN=HWSRCDR,DISP=SHR

Note: The SDFSRESL library, which is the IMS Version 8.1 or later execution

library, is required by IMS Connect when IMSplex support is used. If

IMSplex support is not used, then the SDFSRESL library is not required. IMS

Connect requires the CEE.SCEERUN, SYS1.CSSLIB, and GSK.SGSKLOAD

libraries (which are the C execution and z/OS system SSL libraries) only

when SSL support is used.

Configuring IMS Connect

IMS Connect supports communication between one or more TCP/IP clients and

IMS systems. IMS Connect uses TCP/IP for communication with clients and IMS

OTMA for communication with IMS. It also provides a mechanism to start or stop

TCP/IP clients or datastores through the use of commands.

You can configure multiple IMSs on multiple MVS systems within a single sysplex

and distribute the client request to the IMSs (datastores).

To configure IMS Connect, perform the following actions:

1. Authorize the Application Program Family (APF).

2. Update the Program Properties Table (PPT) in MVS. Updating the PPT allows

IMS Connect to run in authorized supervisor state and in key 7.

3. Create an IMS Connect configuration member to hold the configuration

statements that IMS Connect uses during initialization.

4. Define IMS Connect security.

Authorizing IMS Connect to the APF

SDFSRESL, the resident library (RESLIB) in which the IMS Connect modules

reside, must be authorized to the APF. Create and run a JCL job that authorizes

SDFSRESL to the APF.

Defining the IMS Connect Environment

8 IMS Connect Guide and Reference

Updating the MVS PPT

Because IMS Connect is executed in supervisor state and key 7, add an entry for it

in the MVS Program Properties Table (PPT) as follows:

1. Edit the SCHEDxx member of the SYS1.PARMLIB data set.

2. Add the required entries to the MVS PPT:

For TCP/IP communications only, add the following entry in the MVS PPT:

PPT PGMNAME(HWSHWS00) /* PROGRAM NAME = HWSHWS00 */

 CANCEL /* PROGRAM CAN BE CANCELED */

 KEY(7) /* PROTECT KEY ASSIGNED IS 7 */

 SWAP /* PROGRAM IS SWAPPABLE */

 NOPRIV /* PROGRAM IS NOT PRIVILEGED */

 DSI /* REQUIRES DATA SET INTEGRITY */

 PASS /* CANNOT BYPASS PASSWORD PROTECTION */

 SYST /* PROGRAM IS A SYSTEM TASK */

 AFF(NONE) /* NO CPU AFFINITY */

 NOPREF /* NO PREFERRED STORAGE FRAMES */

If you are using local option for client communications, either by itself or with

TCP/IP communications, add the following entry in the MVS PPT:

PPT PGMNAME(HWSHWS00) /* PROGRAM NAME = HWSHWS00 */

 CANCEL /* PROGRAM CAN BE CANCELED */

 KEY(7) /* PROTECT KEY ASSIGNED IS 7 */

 NOSWAP /* PROGRAM IS NOT SWAPPABLE */

 NOPRIV /* PROGRAM IS NOT PRIVILEGED */

 DSI /* REQUIRES DATA SET INTEGRITY */

 PASS /* CANNOT BYPASS PASSWORD PROTECTION */

 SYST /* PROGRAM IS A SYSTEM TASK */

 AFF(NONE) /* NO CPU AFFINITY */

 NOPREF /* NO PREFERRED STORAGE FRAMES */

Note: The only difference between the two PPT entries is the use of SWAP or

NOSWAP.

3. To make the changes effective, do either of the following:

v Re-IPL your MVS system.

v Issue the MVS SET SCH= command.

Creating the IMS Connect Configuration Member

Specify the environment for IMS Connect as a member in your PROCLIB data set.

IMS Connect uses the information it retrieves from the member to establish

communication with IMS and TCP/IP. You can define several configuration

members in the PDS to select from during IMS Connect startup. Specify the

member name to use in the HWSCFG= parameter of the IMS Connect startup JCL

(see the previous IMS Connect startup JCL example on 8).

You specify the values for some of the parameters that define the way in which

IMS Connect is to communicate with TCP/IP and IMS OTMA in the IMS Connect

configuration member. Because the configuration member must be in a data set

whose format is fixed block, 80-byte record length, a statement must be carried

over to as many subsequent lines as required if the configuration statement is

longer than 80 characters. Configuration statements should have no imbedded

spaces or continuation characters at the ends of lines that must be continued to the

next line.

The IMS Connect configuration member contains several configuration statements,

which are described in the following topics:

v “HWS configuration statement” on page 10

v “TCPIP configuration statement” on page 10

Defining the IMS Connect Environment

Chapter 2. IMS Connect Definition and Tailoring 9

v “DATASTORE configuration statement” on page 14

v “IMSPLEX configuration statement” on page 15

v “ADAPTER configuration statement” on page 15

For examples of IMS Connect configurations, see “Configuration examples for IMS

Connect” on page 16.

HWS configuration statement: Specify only one HWS configuration statement.

The HWS configuration statement includes the following keyword parameters:

ID= The IMS Connect name, which:

v Consists of alphanumeric character data

v Begins with an alphabetic character

v Has a length between 1 and 8 characters

RACF=

At IMS Connect startup time, determines whether or not the password and

user ID (provided by either the client application or a user exit routine) are

passed to RACF for authentication. This setting can also be changed using

the IMS Connect SETRACF command. Set it to yes or no as follows:

v Y

v N (this is the default)

RRS= Specifies whether RRS communication is to be enabled or disabled. Set

RRS to yes or no as follows:

v Y

v N (this is the default)

SMEMBER=

1–4 character field that specifies the name of the OTMA super member to

which this instance of IMS Connect belongs.

XIBAREA=

Specifies the number of fullwords allocated for the XIB user area. Both the

user initialization exit routine and the user message exit routines can access

and modify the XIB user area. The default value is 20; the maximum value

is 500. If you do not specify a value for this parameter, or you specify a

value outside of the 20 to 500 range, the system uses the default value of

20.

TCPIP configuration statement: Specify only one TCPIP configuration statement.

The TCPIP statement keyword parameters are as follows:

ECB= Specifies whether TCP/IP exit or ECB (Event Control Block) processing is

to be used. ECB processing enhances IMS Connect performance by

increasing throughput.

 Set ECB to yes or no as follows:

v Y

v N (this is the default)

 When ECB= N is specified (or left blank), IMS Connect executes with

TCP/IP driving an IMS Connect exit.

 When ECB=Y is specified, IMS Connect executes with TCP/IP driving IMS

Connect with the posting of an ECB.

Defining the IMS Connect Environment

10 IMS Connect Guide and Reference

|
|
|

EXIT= Specifies the 1- to 8-alphanumeric character names of one or more IMS

Connect user message exit routines that receive control when messages are

received from and sent to TCP/IP clients. For example,

EXIT=(EZAEXIT,EZBEXIT,EZCEXIT,HWSCSLO0,HWSCSLO1). You can specify a

maximum of 254 user message exit routines.

 The exit routines specified on the EXIT parameter support OTMA linkage

through IMS Connect to IMS, as well as the IMS Control Center for

IMSplexes. To use the IMS Control Center with IMS Connect, you must

specify HWSCSLO0 and HWSCSLO1 on the EXIT parameter.

 Do not specify either HWSJAVA0 or HWSUINIT in the EXIT= parameter.

 The HWSJAVA0 exit routine is automatically loaded by IMS Connect after

you install it into the ADFSLOAD library. The HWSJAVA0 exit routine

supports the IMS TM resource adapter (previously know as IMS Connector

for Java). The sample source for HWSJAVA0 is shipped with IMS in the

SDFSSRC library.

 The HWSUINIT exit routine causes IMS Connect to abend if it is specified

on the EXIT parameter. The HWSUINIT exit routine is called only during

IMS Connect startup and termination and is not a user message exit

routine.

HOSTNAME=

A 1- to 8-alphanumeric character field set to the TCP/IP JOBNAME.

 In a single TCP/IP stack (INET) environment, the HOSTNAME parameter

represents the single available TCP/IP stack that IMS Connect connects to.

 In a multiple stack (CINET) environment, IMS Connect attempts to connect

to the stack name specified in the HOSTNAME parameter. If the

HOSTNAME stack is not available, IMS Connect connects to the default

TCP/IP stack.

IPV6= At IMS Connect startup time, determines whether or not Internet Protocol

Version 6 (IPV6) is enabled. Set this parameter to yes or no as follows:

v Y

v N (this is the default)

When IPV6=Y is specified, IPV6 is used.

 When IPV6=N is specified (or left blank), IPV4 is used.

Note: If you use IPV6, z/OS Version 1.4 or later is required.

MAXSOC=

A decimal value between 50 and 65535 that sets the maximum total

number of sockets that this instance of IMS Connect can open. The

maximum number of physical connections that can be made is the

MAXSOC= value less the number of ports, because IMS Connect uses one

socket on each port for listening. For example, if you specify

MAXSOC = 80 and have five ports, 75 physical connections can be made.

The default value is 50.

 When the number of sockets reaches the MAXSOC limit, IMS Connect

refuses any new connections and issues message HWSS0771W. After the

number of connections falls below the MAXSOC value, IMS Connect

resumes accepting connections.

Defining the IMS Connect Environment

Chapter 2. IMS Connect Definition and Tailoring 11

|
|
|
|
|

|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

Important: The MAXSOC parameter is related to the z/OS UNIX® System

Services parameter MAXFILEPROC. The values of MAXSOC

and MAXFILEPROC must be compatible. If the values of each

parameter are not compatible, IMS Connect cannot open any

ports. The values are compatible when the value for

MAXFILEPROC is equal to or greater than the value of

MAXSOC.

You can ensure compatibility between MAXSOC and MAXFILEPROC by

granting IMS Connect superuser privileges in z/OS UNIX System Services,

which allows IMS Connect to change the value of the MAXFILEPROC

parameter automatically. You can grant superuser privileges to IMS

Connect by using the RACF command ALTERUSER to assign an OMVS

segment with a UID of 0 to the user ID of the IMS Connect started task.

Alternatively, your z/OS UNIX System Services administrator can adjust

the value of MAXFILEPROC directly in the BPXPRMxx member of the

z/OS SYS1.PARMLIB data set.

 If IMS Connect does not have superuser privileges and the MAXSOC value

is greater than the MAXFILEPROC value, IMS Connect issues the message

“HWSP1415E TCP/IP SOCKET FUNCTION CALL FAILED; F=SETRLIMI,

R=-1, E=139, M=SDOT” and does not open any ports.

 You can check the value of MAXFILEPROC for IMS Connect by issuing the

UNIX command D OMVS,L,PID=, where PID is the process ID for IMS

Connect. You can determine the PID for IMS Connect by issuing the UNIX

command: D OMVS,V.

 Both MAXSOC and MAXFILEPROC affect the number of sockets that IMS

Connect can open, but with an important difference: the MAXFILEPROC

parameter limits the number of sockets for each port, whereas MAXSOC

limits the total number of sockets for IMS Connect. For example, if the

value of both parameters is 100 and IMS Connect has two ports, the

MAXSOC limit is reached if there are 55 sockets on one port and 45 on the

other. The MAXFILEPROC limit is reached only if the number of sockets

on one of the ports reaches 100.

 As the number of sockets on an IMS Connect port approaches the

MAXFILEPROC value, z/OS UNIX System Services issues message

BPXI040I. For example, “BPXI040I PROCESS LIMIT MAXFILEPROC HAS

REACHED 85% OF ITS CURRENT 404”. The BPXI040I message is only

displayed by z/OS UNIX System Services if LIMMSG is set to SYSTEM or

ALL in SYS1.PARMLIB(BPXPRMxx) or via the SETOMVS command.

 When the MAXFILEPROC value is reached, IMS Connect issues the

following messages:

v “HWSP1415E TCP/IP SOCKET FUNCTION CALL FAILED;

F=ACCEPT4 , R=-1, E=124, M=SDCO”

v “HWSS0771W LISTENING ON PORT=portid FAILED; R=rc, S=sc, M=mc”

Note that when the MAXSOC limit is reached, IMS Connect issues only the

HWSS0771W message. When the MAXFILEPROC limit is reached, IMS

Connect issues both the HWSP1415E and the HWSS0771W message.

PORTID=

A 1- to 8-character decimal field to define TCP/IP ports, or a 5-character

field with the value of LOCAL to define the local option connection. For

TCP/IP port communications, specify the port number or numbers that

Defining the IMS Connect Environment

12 IMS Connect Guide and Reference

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|

|
|

|

|
|
|

will bind to the socket. You can define up to 50 ports. Port numbers must

be within the range of 1 to 65535 and must not conflict with other ports

selected in the TCP/IP domain.

 To enable the local option connection, specify a value of LOCAL. You can

enable the local option connection and define up to 50 TCP/IP ports for

TCP/IP communications. Some PORTID configuration examples include:

PORTID=(9999,8888,7777)

PORTID=(LOCAL)

PORTID=(6666,5555,4444,3333,LOCAL)

RACFID=

A 1 to 8 alphanumeric character field set to the default RACF ID for exits

to pass to OTMA for security checking if the RACF ID has not explicitly

been set in the incoming message or by the user exit.

SSLENVAR=

The member name of the SSL initialization file.

SSLPORT=

Defines a Secure Socket Layer (SSL) port by using a numeric character

decimal field with a valid value range of 1 to 65535. For SSL port

communication, specify the port number that will bind to the socket.

Define only a single port. Defining more than one SSL port leads to

unpredictable results. SSL ports must not conflict with any other ports

selected in the TCP/IP domain or those selected under the PORTID

parameter as basic TCP/IP ports. An example of an SSLPORT

configuration is:

SSLPORT=(8887)

TIMEOUT=

A decimal integer field to disconnect the client. The timeout interval is in

hundredths of seconds. The maximum value of timeout is 2147483647

(X'7FFFFFFF') and the default is 0 (which means no timeout). The range is

from 0 to 2147483647.

 IMS Connect uses the timeout value to determine the amount of time to

wait for a response from IMS that is being sent to the client. This timeout

value is used to prevent the client from appearing to be “hung.” A hang

condition occurs when the IMS host application is not responding, because

either:

v The IMS program for this transaction code is stopped

v The dependent region that would run the transaction is not active

v The IMS host application is looping

The client sets a second timeout value in the IRM (IMS Request Message)

header field IRM_TIMER for use with a READ to OTMA following a

RESUME TPIPE command (see “Resume Tpipe/Receive Protocol for

Asynchronous Output” on page 105 for more information), and the ACK

following the READ(s) for a RESUME TPIPE.

 This timeout value is also used to disconnect a client and not send data

following a client socket connection. If the timeout value is set to 10

seconds, and the client application performs a socket connection, then the

client application has 10 seconds in which to send the transaction code and

data. If the socket connection is made and the client application delays for

more than 10 seconds, the socket connection terminates. This timeout value

on an IMS Connect read of the client only applies to the wait time between

the socket connection and the first input from the client application. The

Defining the IMS Connect Environment

Chapter 2. IMS Connect Definition and Tailoring 13

|
|
|
|
|
|
|
|

|

timeout function is not activated between reads but only between the

connection and the first IMS Connect read of the client application input.

DATASTORE configuration statement: To access IMS OTMA, specify each

datastore with which the IMS Connect communicates through IMS OTMA. The

DATASTORE configuration statement keyword parameters are as follows:

APPL=

A 1 to 8 alphanumeric character field set to the TCP/IP APPL name

defined to RACF in the PTKTDATA statement. This parm is optional and

will default to blanks. If you are using PassTicket and user message exits,

HWSIMSO0, HWSIMSO1, or both, you must specify the APPL on the

DATASTORE statement.

DRU= A 1 to 8 alphanumeric character field. The DRU keyword enables you to

specify your own OTMA destination resolution user exit name that is to be

passed to OTMA. The DRU exit is required to support asynchronous

output to IMS Connect clients. The default is DFSYDRU0, but you can

write your own exit. See the DRU exit information in the IMS Open

Transaction Manager Access Guide for more information about OTMA DRU

exits.

GROUP=

The XCF group name for the IMS OTMA. IMS Connect uses this value to

join the appropriate XCF group(s). Because IMS Connect and IMS must be

in the same XCF group in order to communicate, this group name must

match the XCF group name that you define to IMS (GRNAME) in the IMS

startup JCL (for example, ″OTMA=Y,GRNAME=&GROUP,USERVAR=
&MEMBER″,...). Each IMS Connect can join any number of groups.

ID= The datastore name, which:

v Consists of alphanumeric character data

v Begins with an alphabetic character

v Has a length between 1 and 8 bytes

v Is unique within the IMS Connect configuration member to avoid

unpredictable results

This ID must match the datastore ID that is supplied by the client. For IMS

Connector for Java clients, this ID must match the name that is specified in

the IMS Interaction Spec for IMS Connector for Java. For non-IMS

Connector for Java clients, the ID must match the datastore ID that is

placed in the IMS Request Message (IRM) that is sent to IMS Connect (see

“How IMS Connect Communicates with a TCP/IP Client” on page 39).

Note: This ID name cannot be the same name as the tmember name on the

IMSPLEX statement.

MEMBER=

The XCF member name that identifies IMS Connect in the XCF group

specified by the GROUP parameter. This name is the XCF name that IMS

uses to communicate with IMS Connect in that XCF group. This XCF

member name for IMS Connect must be unique in the datastore definitions

for all datastores that are members of the same XCF group.

RRNAME=

A string of 1- to 8-uppercase alphanumeric (A through Z, 0 to 9) or special

characters (@, #, $), left-justified, and padded with blanks. IMS Connect

translates lowercase characters to uppercase characters.

Defining the IMS Connect Environment

14 IMS Connect Guide and Reference

|
|

|
|
|
|

The value of RRNAME is the name of an alternate destination specified in

a client reroute request. If this string is not provided, IMS Connect uses

HWS$DEF as the default name. The string is terminated by any blank or

invalid character. The reroute name is truncated at any invalid character.

TMEMBER=

The XCF member name for IMS that IMS Connect uses in order to

communicate with an IMS in its XCF group. This target member name

must match the member name IMS uses when it joins the XCF group. The

XCF member name for IMS is specified in the IMS startup JCL (for

example, ″...,OTMA=Y,GRNAME=&GROUP, OTMANM=&TMEMBER,...″).

Each datastore definition within an IMS Connect configuration member

must contain a unique tmember name.

IMSPLEX configuration statement: To access IMS Operations Manager (OM),

specify each IMSPLEX that IMS Connect communicates with through the IMS

Structure Call Interface (SCI). The IMSPLEX statement keyword parameters are as

follows:

MEMBER=

This name is passed to the SCI as the name of the IMS Connect that is

communicating with the IMS OM through the SCI.

TMEMBER=

This name is the name of the SCI to which IMS Connect communicates.

The tmember name:

v consists of alphanumeric character data

v begins with an alphabetic character

v has a length between 1 and 5 bytes

v must be the name specified in the SCI initialization proclib member --

IMSPLEX(NAME=name)

Note: The tmember name cannot be the same name as the ID name on the

DATASTORE statement.

RUNOPTS=

A 1- to 255-character string field that specifies the Language Environment

(LE) runtime options to be used to override the IMS Connect default

runtime options in support of SSL. This parameter is optional. It is

applicable only to the LE environment for SSL support. IMS Connect

passes the default values POSIX(ON),TRAP(OFF,NOSPIE), unless overridden

by the RUNOPTS parameter.

ADAPTER configuration statement: The ADAPTER configuration statement

enables the XML adapter required to support the conversion of XML data

submitted by IMS SOAP Gateway into the COBOL application format expected by

COBOL IMS applications. Specify only one ADAPTER configuration statement.

In addition to specifying the ADAPTER configuration statement, you must take

additional steps to enable XML-to-COBOL conversion. These steps are described in

“Configuring XML-to-COBOL Conversion Support for IMS SOAP Gateway” on

page 36.

The ADAPTER statement keyword parameters are as follows:

XML= Specifies whether to enable or disable XML Adapter support.

Defining the IMS Connect Environment

Chapter 2. IMS Connect Definition and Tailoring 15

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|

||

XML=Y

Enables the XML adapter

XML=N

Disables an XML-to-COBOL adapter. XML=N is the default.

The following example shows the specification of the ADAPTER configuration

statement:

ADAPTER=(XML=Y)

Configuration examples for IMS Connect: See Figure 3 for an example of a

simple system configuration.

v In the following IMS Connect configuration member, the IMS Connect ID is

defined as HWS. This IMS Connect is configured to include the ports defined for

TCP/IP communications and the IMS OTMA group and member names for

communication with IMS.

v The TCP/IP configuration defines the HOSTNAME as MVSTCPIP, the RACFID as

RACFID, the PORTID as 9999, and the EXIT as HWSSMPL0.

v The datastore configuration defines the ID as IMS, the GROUP as XCFGROUP, the

MEMBER as HWSMEM, and the TMEMBER as IMSMEM.

* IMS Connect EXAMPLE 1 CONFIGURATION FILE

HWS (ID=HWS,RACF=N,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,PORTID=(9999),MAXSOC=2000,TIMEOUT=8888,

EXIT=(HWSSMPL0))

DATASTORE (ID=IMS,GROUP=XCFGROUP,MEMBER=HWSMEM,TMEMBER=IMSMEM,DRU=HWSYDRU0)

Important: In all of the example configurations shown, you can continue

parameters beyond an 80–column line by using any combination of the following

techniques:

v Inserting a comma followed by three blanks, then continuing the parameter on

the next line. An example of this technique is shown above in the IMS Connect

Example 1 Configuration File.

v Using all 80 columns of a line, then continuing in the next statement. You do not

need to use a continuation indicator (such as an ″x″ in column 72).

See Figure 4 on page 17 for an example of a more complex system configuration.

Figure 3. Simple System Configuration

Defining the IMS Connect Environment

16 IMS Connect Guide and Reference

|
|

|
|

|
|

|

|

v In this example, three IMS Connects are configured. Each IMS Connect has its

own configuration member.

v Each IMS Connect uses a different port number for TCP/IP communications and

can belong to multiple XCF groups.

v One or more IMSs can belong to each XCF group.

v When defining multiple datastores that belong to the same XCF group in a

single IMS Connect configuration member, the XCF member name for that IMS

Connect must be unique in each DATASTORE statement. However, if the

datastores are members of different XCF groups, the XCF member names can be

the same for different datastores within a single IMS Connect configuration

member.

For example, observe that the XCF member name for IMS Connect in the IMSA

and IMSB DATASTORE statements in the HWS2 configuration member in the

configuration example, HWSMEM2, is the same for both DATASTORE statements.

The IMSA and IMSB datastores are members of different XCF groups—GROUPA

and GROUPB, respectively—so the XCF member names can be identical. Note that

these member names could have been made unique, for example, HWS2MEMA

and HWS2MEMB, but it is not necessary to do so. However, the XCF member

names for IMS Connect in the IMSB and IMSC DATASTORE statements in the

HWS2 configuration member are different because the IMSB and IMSC datastores

are members of the same XCF group, GROUPB.

* HWS EXAMPLE 2 CONFIGURATION MEMBER FOR HWS1

HWS (ID=HWS1,RACF=N,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,PORTID=(9999),MAXSOC=2000,TIMEOUT=8888,EXIT=(HWSSMPL0))

DATASTORE (ID=IMSA,GROUP=GROUPA,MEMBER=HWS1MEM,TMEMBER=IMSAMEM,DRU=HWSYDRU0)

* HWS EXAMPLE 2 CONFIGURATION MEMBER FOR HWS2

Figure 4. Complex System Configuration

Defining the IMS Connect Environment

Chapter 2. IMS Connect Definition and Tailoring 17

|
|
|
|
|
|
|
|
|
|
|

HWS (ID=HWS2,RACF=N,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,PORTID=(9998),MAXSOC=2000,TIMEOUT=8888,EXIT=(HWSSMPL0))

DATASTORE (ID=IMSA,GROUP=GROUPA,MEMBER=HWS2MEM,TMEMBER=IMSAMEM,DRU=HWSYDRU0)

DATASTORE (ID=IMSB,GROUP=GROUPB,MEMBER=HWS2MEM,TMEMBER=IMSBMEM,DRU=HWSYDRU0)

DATASTORE (ID=IMSC,GROUP=GROUPB,MEMBER=HWS2MEMC,TMEMBER=IMSCMEM,DRU=HWSYDRU0)

* HWS EXAMPLE 2 CONFIGURATION MEMBER FOR HWS3

HWS (ID=HWS3,RACF=Y,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,PORTID=(9997),MAXSOC=2000,TIMEOUT=8888,

EXIT=(HWSSMPL0))

DATASTORE (ID=IMSB,GROUP=GROUPB,MEMBER=HWS3MEMB,TMEMBER=IMSBMEM,DRU=HWSYDRU0)

DATASTORE (ID=IMSC,GROUP=GROUPB,MEMBER=HWS3MEMC,TMEMBER=IMSCMEM,DRU=HWSYDRU0)

* HWS EXAMPLE OF INCLUDING THE SUPPORT FOR CONTROL CENTER

HWS (ID=HWS4,RACF=Y,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,PORTID=(9999,LOCAL),MAXSOC=2000,TIMEOUT=8800,

EXIT=(HWSCSLO0,HWSCSLO1,HWSSMPL1))

IMSPLEX (MEMBER=IMSPLEX1,TMEMBER=PLEX1)

* HWS EXAMPLE OF INCLUDING THE SUPPORT FOR CONTROL CENTER AND IPV6

HWS (ID=HWS5,RACF=Y,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,PORTID=(9999),MAXSOC=2000,TIMEOUT=8800,

EXIT=(HWSCSLO0,HWSCSLO1,HWSSMPL1),IPV6=Y)

IMSPLEX (MEMBER=IMSPLEX1,TMEMBER=PLEX1)

* HWS EXAMPLE OF INCLUDING THE APPL NAME FOR PASSTICKET SUPPORT

HWS (ID=HWS6,RACF=Y,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,PORTID=(9999),MAXSOC=2000,TIMEOUT=8800,

EXIT=(HWSSMPL0)

DATASTORE (ID=IMS,GROUP=XCFGROUP,MEMBER=HWSMEM,TMEMBER=IMSMEM,DRU=HWSYDRU0,APPL=APPLID1)

* HWS EXAMPLE OF INCLUDING THE SUPPORT FOR SSL

HWS (ID=HWS7,RACF=N,XIBAREA=20))

TCPIP (HOSTNAME=TCIPI,PORTID=(9998),SSLPORT=(9999),SSLENVAR=SSLENVAR,EXIT=(HWSSMPLO))

DATASTORE (ID=SOCKEYE,MEMBER=COHO,TMEMBER=CHINOOK,GROUP=SALMON)

* HWS EXAMPLE OF INCLUDING XML ADAPTER SUPPORT

HWS (ID=HWS8,RACF=Y,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,

PORTID=(9999,LOCAL),MAXSOC=2000,TIMEOUT=8800,

EXIT=(HWSSMPL1,HWSSOAP1))

ADAPTER (XML=Y)

Enabling Support for Internet Protocol Version 6

Internet Protocol Version 6 (IPV6) is the next generation of the Internet Protocol

designed to replace the current Internet Protocol Version 4 (IPV4). The features of

IPV6 include:

v Dramatically larger address spaces

v Global unique and hierarchical addressing, based on prefixes rather than on

address classes to keep routing tables small and backbone routing efficient

v Multicasting instead of broadcasting

v A class of service to distinguish between different types of traffic

Defining the IMS Connect Environment

18 IMS Connect Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

v A built-in mechanism for autoconfiguration of network interfaces

v Built in authentication and encryption

v Mobile IP support

v Encapsulation of itself and other protocols

v Transition methods to migrate from IPV4

v Compatibility methods to coexist and communication with IPV4

Related Reading: For more information about IPV6, see IPv6 Network and

Application Design Guide.

To enable IPV6 support for IMS Connect, do the following:

v Ensure that IMS Connect is running on z/OS V1R4.

v Customize the z/OS UNIX BPXPRMxx member, as follows:

FILESYSTYPE Type(INET) Entrypoint(EZBPFINI)

NETWORK DOMAINNAME(AF_INET)

DOMAINNUMBER(2)

 MAXSOCKETS(2000)

 TYPE(INET)

NETWORK DOMAINNAME(AF_INET6)

DOMAINNUMBER(19)

 MAXSOCKETS(3000)

 TYPE(INET)

Then recycle the TCP/IP stack. For more information about customizing this

member, see z/OS UNIX System Services Planning.

v Customize the IMS Connect configuration member with the IPv6 parameter, as

described in “TCPIP configuration statement” on page 10.

v For each of the READ subroutines in the list below that you use, determine

whether the EXPREA_IPV6 bit is turned on in the EXPREA_FLAG2 field of the

READ subroutine. If it is turned on, IPV6 is enabled. Then map

EXPREA_SOCKET6 to the AF_INET6 socket address structure. See “READ

Subroutine” on page 53 for more information.

– HWSJAVA0

– HWSSMPL0

– HWSSMPL1

If IPV6 is enabled, the IP address displayed in the output of the VIEWHWS command

consists of eight hexadecimal numbers divided by colons. If IPV6 is not enabled,

the IP address format of IPV4 is used. The following example is for an IPV6 IP

address displayed using IPV6 format:

FEDC:ABCD:2222:3333:FEDC:DB55:6666:3322

The following example is for an IPV4 IP address displayed using IPV6 format:

0:0:0:0:0:FFFF:945:33FF

For more information:

v About the IP address format for IPV6, see IPV6 Network and Application Design

Guide.

v About the IP address format in the output of the VIEWHWS command, see the IMS

Version 9: Command Reference.

Defining IMS Connect Security

You can start IMS Connect as a job or as a procedure.

Defining the IMS Connect Environment

Chapter 2. IMS Connect Definition and Tailoring 19

If the datastore (which is IMS) is RACF protected, you have to start IMS Connect

as a job with the JOB card specifying a valid USERID in order to make the

connection from IMS Connect to IMS, or you can use the RACF started procedure

table. The USERID=&userid parameter specified in the JOB card of the IMS

Connect job JCL is used as the security vehicle to ensure IMS Connect access to

IMS. &USERID must have READ access to IMSXCF.group.member. IMS OTMA

provides security for the IMS XCF connection by defining and permitting

IMSXCF.group.member in the RACF FACILITY class. For details, see the section

dealing with security for OTMA in the IMS Open Transaction Manager Access Guide.

Requirement: To configure security for the local option using RACF, you must add

HWS.ICON_NAME as the SAF facility class name (whether you configured

security with the IMS Connect configuration member or SETRACF command).

ICON_NAME is how IMS Connect is defined in the ID parameter of the HWS

statement in the IMS Connect configuration member. The resource that must access

IMS Connect is the Websphere Application Server (WAS), and UPDATE authority

is required to update the RACF profile.

Configuring the IMS Connect Base Primitive Environment

(BPE)

The IMS Connect address space is built on top of the IMS Connect BPE. Generally,

you do not need to work with the IMS Connect BPE unless you are defining an

XML adapter for XML-to-COBOL conversion support or your IBM service

representative requests that you change the default settings for certain IMS

Connect BPE functions such as storage management, internal tracing, dispatching,

and other system-service functions.

This section describes how to define the configuration data set member, and

includes some examples.

Changing the IMS Connect BPE Configuration Parameter

PROCLIB Member

The IMS Connect BPE configuration parameter PROCLIB member defines IMS

Connect BPE execution environment settings for the IMS Connect address space.

You specify the PROCLIB member name by coding BPECFG=member_name on the

EXEC PARM= statement in the IMS Connect address space startup JCL, as shown

in the following example:

EXEC HWSHWS00,PARM=’BPECFG=BPECFGHW’

You can use the IMS Connect BPE configuration parameter PROCLIB member to

specify the following items:

v The XML adapter used by IMS Connect to support XML-to-COBOL conversion

support for IMS SOAP Gateway input messages. The XML adapter is defined as

a BPE exit routine in the BPE exit list PROCLIB member pointed to by the

EXITMBR parameter.

v The language used for IMS Connect BPE and IMS Connect messages

v The trace level settings for IMS Connect BPE and IMS Connect internal trace

tables

These are the keywords that are available for the BPE configuration parameter

PROCLIB member:

v “EXITMBR” on page 21

v “LANG” on page 21

v “TRCLEV” on page 21

Defining the IMS Connect Environment

20 IMS Connect Guide and Reference

|
|
|
|
|
|

|
|
|
|

Recommendation: Avoid coding statements in the IMS Connect BPE configuration

member that specify definitions for the same resources more than one time. For

example, multiple TRCLEV statements for the same trace table type, or multiple

EXITMBR statements for the same IMS Connect. BPE uses the last statement it

encounters in the member. Any values that are specified on earlier duplicate

statements are ignored. A message BPE0017I is issued for each duplicate found.

EXITMBR: IMS Connect uses the EXITMBR and EXITDEF keywords to define the

XML adapter required for XML-to-COBOL data conversion support for IMS SOAP

Gateway. Use the EXITMBR keyword to point to the BPE exit list PROCLIB

member for IMS Connect. In the BPE exit list PROCLIB member, use the EXITDEF

keyword to create a BPE exit definition for the XML adapter.

In the following example for the EXITMBR keyword, “membernm”, which can be

any eight-character name, specifies the name of the BPE exit list PROCLIB member

for the XML adapter, and “HWS” identifies IMS Connect as the component to

which the PROCLIB member belongs:

EXITMBR=(membernm),HWS)

In the following example of the EXITDEF keyword, the EXITS parameter and the

COMP parameter must be specified as shown. The ABLIM parameter can be any

appropriate value for your installation.

EXITDEF=(TYPE=XMLADAP,EXITS=(HWSXMLA0),ABLIM=n,COMP=HWS)

LANG:

�� LANG=ENU ��

The LANG parameter specifies the language used for IMS Connect BPE and IMS

Connect messages. ENU is for US English, which is currently the only supported

language.

TRCLEV:

�� TRCLEV= (type,level,component)

,PAGES=

num_pages
 ��

The TRCLEV parameter specifies the trace level for a trace table, and optionally

the number of pages of storage allocated for the trace table. TRCLEV= controls the

level of tracing (the amount of detail traced) for each specified trace table type.

BPE-managed trace tables are areas in storage where IMS Connect BPE, and IMS

Connect, can trace diagnostic information about events going on within the

address space. Each trace table has a trace table type associated with it. A trace

table’s type refers to the kind of events that are traced into that table. For example,

the BPE DISP trace table contains entries related to events in the BPE dispatcher.

IMS Connect BPE-managed trace tables are internal in-core tables only. Trace

records are not written to any external data sets. Some trace table types are defined

and owned by IMS Connect BPE itself. These are known as system trace tables.

IMS Connect also defines its own trace tables. These are known as component

trace tables or user-product trace tables.

type

Specifies the type of trace table.

Configuring the IMS Connect BPE

Chapter 2. IMS Connect Definition and Tailoring 21

|

|
|
|
|
|

|
|
|
|

|

|
|
|

|

|

You can code the following values for IMS Connect BPE-defined trace tables:

* Specify as TRCLEV=(*,level,BPE).

 Specifying a type of * enables you to set the default trace level (and

optionally, the default number of pages per trace table) for all IMS Connect

BPE-defined trace table types. If you use the * type, make sure it is the first

TRCLEV statement for IMS Connect BPE-defined trace table types in your

PROCLIB member. You can then code additional TRCLEV statements for

specific IMS Connect BPE types to selectively override the defaults.

 Recommendation: Code a TRCLEV statement with a type of * for IMS

Connect BPE traces, specifying a level of HIGH as your first TRCLEV

statement for IMS Connect BPE-defined trace table types. Using this coding

ensures that at least some tracing is done for all BPE trace tables. It also

ensures that any new trace table types that are added in the future will be

turned on in your system, even if you have not modified your IMS

Connect BPE configuration parameter PROCLIB member to explicitly add

a TRCLEV statement.

AWE

Specify as TRCLEV=(AWE,level,BPE).

 The asynchronous work element (AWE) services trace table traces AWE

server creation and deletion and AWE processing requests. The default

number of pages for this table is 2.

CBS

Specify as TRCLEV=(CBS,level,BPE).

 The control block services trace table traces requests for control block

storage. The default number of pages for this table is 4.

CMD

Specify as TRCLEV=(CMD,level,BPE).

 The command trace table traces the first 48 characters of each command

processed by IMS Connect BPE. The default number of pages for this table

is 2.

 Recommendation: The CMD trace table performance impact is very low.

To ensure that a command history is kept for diagnostics, specify a LEVEL

of at least LOW.

DISP

Specify as TRCLEV=(DISP,level,BPE).

 The dispatcher trace table traces BPE dispatcher activity. The default

number of pages for this table is 4.

ERR

Specify as TRCLEV=(ERR,level,BPE,PAGES=num_pages).

 The error trace table traces error events within an IMS Connect BPE

address space. The default number of pages for this table is 2.

 Restriction: You cannot set the level for the ERR trace table. BPE forces the

level to HIGH to ensure that error diagnostics are captured. Any level that

you specify for the ERR trace table is ignored. You can, however, specify

the number of pages for the ERR trace table on the TRCLEV statement.

LATC

Specify as TRCLEV=(LATC,level,BPE).

Configuring the IMS Connect BPE

22 IMS Connect Guide and Reference

|
|
|
|
|
|
|
|

The latch trace table traces IMS Connect BPE latch management

(serialization) activity. The default number of pages for this table is 4.

SSRV

Specify as TRCLEV=(SSRV,level,BPE).

 The system services trace table traces IMS Connect BPE system service

calls. The default number of pages for this table is 2.

STG

Specify as TRCLEV=(STG,level,BPE).

 The storage service trace table traces storage service requests. The default

number of pages for this table is 4.

USRX

Specify as TRCLEV=(USRX,level,BPE).

 The user exit routine trace table traces activity related to exit routines (for

example, loads, calls, or abends). The default number of pages for this

table is 2.

 You can code the following values for IMS Connect-defined trace tables:

* Specify as TRCLEV=(*,level,HWS).

 Specifying a type of * enables you to set the default trace level (and

optionally, the default number of pages per trace table) for all IMS

Connect-defined trace table types. If you use the * type, make sure it is the

first TRCLEV statement for IMS Connect-defined trace table types in your

PROCLIB member. You can then code additional TRCLEV statements for

specific IMS Connect types to selectively override the defaults.

 Recommendation: Code a TRCLEV statement with a type of * for IMS

Connect traces, specifying a level of HIGH as your first TRCLEV statement

for IMS Connect-defined trace table types. Using this coding ensures that

at least some tracing is done for all IMS Connect trace tables. It also

ensures that any new trace table types that are added in the future will be

turned on in your system, even if you have not modified your IMS

Connect BPE configuration parameter PROCLIB member to explicitly add

a TRCLEV statement.

CMDT

Specify as TRCLEV=(CMDT,level,HWS).

 The command trace table traces IMS Connect command activity. The

default number of pages for this table is 2.

ENVT

Specify as TRCLEV=(ENVT,level,HWS).

 The interface trace table traces activity in the interface between an IMS

Connect and its client. The default number of pages for this table is 2.

HWSI

Specify as TRCLEV=(HWSI,level,HWS).

 The IMS Connect to OTMA driver trace table traces communication

activity between IMS Connect and OTMA drivers. The default number of

pages for this table is 2.

HWSN

Specifies as TRCLEV=(HWSN,level,HWS)

Configuring the IMS Connect BPE

Chapter 2. IMS Connect Definition and Tailoring 23

|
|
|
|
|
|
|
|

The IMS Connect to local option driver trace table traces communication

activity and event between local option driver and IMS Connect. The

default number of pages for this table is 2.

HWSW

Specify as TRCLEV=(HWSW,level,HWS).

 The IMS Connect to TCP/IP driver trace table traces communication

activity and events between TCP/IP drivers and IMS Connect. The default

number of pages for this table is 2.

OTMA

Specify as TRCLEV=(OTMA,level,HWS).

 The OTMA communication driver trace table traces internal

communication protocol activity (XCF calls). The default number of pages

for this table is 2.

PCDR

Specifies as TRCLEV=(PCDR,level,HWS)

 The local option driver trace table traces local option communication

protocol activity. The default number of pages for this table is 2.

TCPI

Specify as TRCLEV=(TCPI,level,HWS).

 The TCP/IP communication driver trace table traces communication

protocol activity (TCP/IP calls). The default number of pages for this table

is 2.

OMDR

Specify as TRCLEV=(OMDR,level,HWS).

 The IMSplex communication driver trace table traces communication

protocol activity (SCI calls). The default number of pages for this table is 2.

HWSO

Specify as TRCLEV=(HWSO,level,HWS).

 The IMSplex driver trace table traces communication activity and events

between the IMSplex driver and IMS Connect. The default number of

pages for this table is 2.

RRSI

Specify as TRCLEV=(RRSI,level,HWS).

 The Two Phase Commit trace table traces communication activity and

events between IMS Connect and RRS. The default number of pages for

this table is 2.

component

Specifies the IMS Connect component that defines the trace table type. Possible

values are:

BPE

Indicates that the table is an IMS Connect BPE-defined (system) trace table

type.

HWS

Indicates that the table is an IMS Connect-defined trace table type.

level

Controls how much tracing is done in a specified trace table. Each trace entry

Configuring the IMS Connect BPE

24 IMS Connect Guide and Reference

that is made has a level associated with the entry. Each trace level has a level

setting that is controlled by the level value which you specify on the TRCLEV

statement.

 BPE supports LOW, MEDIUM, HIGH; however IMS Connect specifies only

HIGH on its trace entries, so you must set the level value to HIGH to receive

any traces.

 A high setting of the level parameter results in more trace entries written to the

table. More trace entries can provide additional diagnostic information for

solving a problem; however, the trace table tends to wrap more frequently, and

higher settings can cause additional CPU usage. Also, trace information is not

as detailed at higher settings so the captured information might not be

sufficient to solve a problem.

 Choose one of the following values for the level parameter:

NONE

No tracing.

 Note: Do not specify NONE because no tracing, not even tracing for error

conditions, is done for the specified table. The level can be changed

from NONE to one of the other values by issuing the BPE command

UPD.

ERROR

Only trace entries for error conditions are made. ERROR is the default.

HIGH

High-volume tracing (all component events).

ims_component

Specifies the IMS component that defines the trace table.

PAGES=num_pages

An optional parameter that can be used to specify the number of 4 KB pages

to be allocated for the trace table type.

 The maximum number of pages for any trace table is 32767. If you specify a

number greater than this, IMS Connect BPE uses 32767 as the value for the

PAGES= parameter. If IMS Connect BPE is unable to get the amount of storage

you requested for a trace table, it will try to get a smaller number of pages to

enable some tracing to still be done. You can see the actual number of pages

BPE obtained for each trace table by issuing the DISPLAY TRACETABLE

command.

 If you do not use this parameter, then the trace table has the default number of

pages, as specified under the description each trace table type.

Sample IMS Connect BPE Configuration File: A sample IMS Connect BPE

configuration data set is shown in Figure 5 on page 26.

Configuring the IMS Connect BPE

Chapter 2. IMS Connect Definition and Tailoring 25

|
|
|

Formatting Incore Trace Tables

IMS Connect trace tables are incore tables, which can be formatted from a dump of

an IMS Connect address space by using the IMS Connect dump formatter.

The traces are formatted by the standard IMS Connect BPE formatting services.

You must link-edit HWSFTRC0 with an alias of HWSFTvrm (where v is the version

level, r is the release level, and m is the modification level). For example, IMS

Connect 9.1.0 would have the alias of HWSFT910. The HWSFTRC0 is link-edited as

HWSFT910 and must reside in the IMS Formatting Library to be used for

formatting IMS Connect. The following example shows the INCLUDE, ALIAS, and

NAME statement:

INCLUDE LOAD(HWSFTRC0) HWS FORMATTED TRACE

ALIAS HWSFT910 HWS 9.1.0 FORMATTED TRACE ALIAS

NAME HWSFTRC0(R)

Dor the link edit step, use the parameters shown in the following example:

// PARM=’SIZE=(880K,64K)’,RENT,REFR,

// NCAL,LET,XREF,LIST

Setting IMS Connect Allocations

Refer to the Program Directory for IBM IMS Connect for OS/390 for the

recommended allocations for the required IMS Connect libraries.

To allocate the HWSRCDR data set from TSO, use these settings:

 Data Set Information

Command ===>

Data Set Name : HWSRCDR

**

* CONFIGURATION FILE FOR IMS CONNECT BPE *

**

LANG=ENU /* LANGUAGE FOR MESSAGES */

 /* (ENU = U.S. ENGLISH) */

DEFINITIONS FOR IMS CONNECT BPE SYSTEM TRACES

TRCLEV=(*,LOW,BPE) /* DEFAULT TRACES TO LOW */

TRCLEV=(AWE,HIGH,BPE) /* AWE SERVER TRACE ON HIGH */

TRCLEV=(CBS,MEDIUM,BPE) /* CTRL BLK SRVCS TRC ON MED */

TRCLEV=(DISP,HIGH,BPE,PAGES=12) /* DISPATCHER TRACE ON HIGH */

 /* WITH 12 PAGES (48K BYTES) */

DEFINITIONS FOR IMS CONNECT TRACES

TRCLEV=(*,HIGH,HWS) /* DEFAULT ALL IMS CONNECT TRACES TO HIGH */

TRCLEV=(HWSI,HIGH,HWS) /* BUT RUN IMS CONNECT TO IMS OTMA TRACE... */

TRCLEV=(HWSW,HIGH,HWS) /* AND SERVER TO IMS CONNECT TRACE AT MEDIUM */

DEFINITIONS FOR IMS CONNECT EXITS

EXITMBR=(HWSEXIT0,HWS) /* XML ADAPTER EXIT DEFINITION */

Figure 5. Example of a Configuration File for IMS Connect BPE

Configuring the IMS Connect BPE

26 IMS Connect Guide and Reference

|
|
|
|
|
|
|

|
|
|

General Data Current Allocation

 Volume serial. . . .: USER01 Allocated cylinders: 1

 Device type : 3390 Allocated extents. : 1

 Organization : PS

 Record format. . . .: FB

 Record length. . . .: 1440

 Block size : 14400 Current Utilization

 1st extent cylinders: 1 Used cylinders . . : 1

 Secondary cylinders : 5 Used extents . . . : 1

 Creation date . . .: 1998/10/01

 Expiration date . .: ***None***

Invoking IMS Connect

You invoke IMS Connect using either an MVS procedure or an MVS job. If you

start multiple instances of IMS Connect with the same configuration, a connection

outage can occur.

Recommendation: To avoid starting the same IMS Connect address space more

than once, start the IMS Connect by running an MVS job with a unique MVS

initiator class assigned to it, rather than starting the connection as a procedure. The

following is an example of such a job.

//HWS01 JOB MSGLEVEL=1,TIME=1440,CLASS=Y,USERID=&USERID

//***

//* BRING UP IMS CONNECT USING A JOB *

//***

//HWS01 EXEC HWS,SOUT=A

The following example shows the JCL statements required to define the MVS

environment for IMS Connect.

//HWS PROC RGN=4096K,SOUT=A,

// BPECFG=BPECFGHT,

// HWSCFG=HWSCFG00

//*

//***

//* BRING UP AN IMS CONNECT *

//***

//STEP1 EXEC PGM=HWSHWS00,REGION=&RGN,TIME=1440,

// PARM=’BPECFG=&BPECFG,HWSCFG=&HWSCFG’

//STEPLIB DD DSN=SDFSRESL,DISP=SHR

// DD DSN=SDFSRESL,DISP=SHR

// DD DSN=CEE.SCEERUN,UNIT=SYSDA,DISP=SHR

// DD DSN=SYS1.CSSLIB,UNIT=SYSDA,DISP=SHR

// DD DSN=GSK.SGSKLOAD,UNIT=SYSDA,DISP=SHR

//PROCLIB DD DSN=USER.PROCLIB,DISP=SHR

//SYSPRINT DD SYSOUT=&SOUT

//SYSUDUMP DD SYSOUT=&SOUT

//HWSRCORD DD DSN=HWSRCDR,DISP=SHR

Note: The SDFSRESL library, which is the IMS Version 8.1 or later execution

library, is required by IMS Connect when IMSplex support is used. If

IMSplex support is not used, then the SDFSRESL library is not required. IMS

Connect requires the CEE.SCEERUN, SYS1.CSSLIB, and GSK.SGSKLOAD

libraries (which are the C execution and z/OS system SSL libraries) only

when SSL support is used.
Use the following parameters to define the values in the JCL:

RGN= Specifies the size of the MVS address space to be allocated for the IMS

Connect control program (HWSHWS00).

Setting IMS Connect Allocations

Chapter 2. IMS Connect Definition and Tailoring 27

SOUT=

Specifies the class assigned to SYSOUT DD statements.

BPECFG=

Specifies the name of a member in the PROCLIB data set that contains the

IMS Connect BPE specifications.

HWSCFG=

Specifies the name of a member in the PROCLIB data set that contains the

IMS Connect configuration information.

Customizing IMS Connect

You can customize various aspects of IMS Connect to fit your specific business

needs by using the user message exits that IMS Connect provides. These exits are

described in the following table.

 Table 2. IMS Connect Exits and Descriptions

Exit Name Type Associated

Macro Files

Purpose and Description

HWSCSLO0b

HWSCSLO1b

User message exits N/A User message exits that are

required to support the IMS

Control Center and are used in

conjunction with the Operations

Manager support. If you want to

connect to the IMS Control

Center, these exits must be

specified on the EXIT=

parameter of the TCP/IP

statement in the IMS Connect

configuration file.

HWSIMSO0ad User message exit N/A Replaces the EZAIMSO0 exit

previously provided by TCP/IP.

HWSIMSO1ad User message exit N/A Replaces the HWSIMS00 exit.

Passes a fullword length field

preceding the message.

HWSJAVA0

c User message exit

for IMS Connector

for Java clients only

HWSIMSCB

HWSIMSEA

HWSEXPRM

HWSOMPFX

Enables IMS Connector for Java

users to edit messages and

perform security checking.

HWSSMPL0ae User message exit

for non-IMS

Connector for Java

clients only

HWSIMSCB

HWSIMSEA

HWSEXPRM

HWSOMPFX

Enables you to use your own

message formats. HWSSMPL0

returns the MOD name to the

client for message formatting if

the IMS transaction supplies the

name. You can also use your

own formats to pass the client’s

authentication and have this, or

another user exit, verify client

authentication.

Invoking IMS Connect

28 IMS Connect Guide and Reference

Table 2. IMS Connect Exits and Descriptions (continued)

Exit Name Type Associated

Macro Files

Purpose and Description

HWSSMPL1a User message exit

for non-IMS

Connector for Java

clients only

HWSIMSCB

HWSIMSEA

HWSEXPRM

HWSOMPFX

Enables you to use your own

message formats. HWSSMPL1

returns the MOD name to the

client for message formatting if

the IMS transaction supplies the

name. HWSSMPL1 also passes a

fullword length field preceding

the message. You can also use

your own formats to pass the

client’s authentication and have

this, or another user exit, verify

client authentication.

HWSSOAP1f User message exit

for IMS SOAP

Gateway

N/A Reads the IMS SOAP Gateway

input message and passes the

appropriate XML converter

name and the XML adapter

name to IMS Connect.

HWSSOAP1 is object code only

and cannot be modified.

HWSTECL0c User message exit See Appendix G,

“HWSTECL0

User Exit,” on

page 205 for a list

of associated

macro files.

Enables you to customize IMS

Connect to support event

recording. Stores all trace and

event notifications through a

recording routine to be used by

any event recording function.

For more information about

customizing this message exit,

see Appendix G, “HWSTECL0

User Exit,” on page 205.

HWSYDRU0

c Sample OTMA DRU

exit

N/A A DRU exit is required to

support IMS Connect’s

asynchronous output features.

See the IMS Open Transaction

Manager Access Guide for

information about writing a

DRU exit.

HWSUINIT

c User initialization

exit

HWSXIB

HWSXIBDS

Enables you to perform your

own processing during IMS

Connect initialization and

termination. The user message

exits receive control during each

incoming and outgoing message,

but HWSUINIT receives control

only at initialization and

termination time.

Customizing IMS Connect

Chapter 2. IMS Connect Definition and Tailoring 29

||
|
|

||
|
|
|
|
|
|

Table 2. IMS Connect Exits and Descriptions (continued)

Exit Name Type Associated

Macro Files

Purpose and Description

aThese exits must be specified on the EXIT= parameter of the TCP/IP statement in the IMS

Connect configuration file. If you use your own user message exit, your exit must also be

specified on the EXIT= parameter of the TCP/IP statement in the IMS Connect configuration

file.

b If you want to connect to the IMS Control Center, these exits must be specified on the

EXIT= parameter of the TCP/IP statement in the IMS Connect configuration file.

c Do not define these exits in the IMS Connect configuration file, specifically on the EXIT=

parameter of the TCP/IP statement. HWSJAVA0 is dynamically loaded by IMS Connect;

HWSYDRU0 is loaded by OTMA during IMS Connect initialization; HWSUINIT is

dynamically loaded by IMS Connect during IMS Connect initialization.

dIMS Connect Version 9 is the last release to support HWSIMSO0 and HWSIMS01. These

two user message exits will not be available with any future release of IMS Connect. It is

recommended that you migrate to HWSSMPL1.

eIt is recommended that you migrate from HWSSMPL0 to HWSSMPL1 because new

function will no longer be added to HWSSMPL0.

fIf you are enabling XML data conversion support for IMS SOAP Gateway messages, this

exit must be specified on the EXIT= parameter of the TCP/IP statement in the IMS Connect

configuration file.

The HWSIMSO0, HWSIMS01, HWSCSLO0, and HWSCSLO1 user message exits, as

well as the IMS Connect components, are installed on your system. To customize

any of the other exits, modify the exit and then install it into your IMS Connect

resource library (SDFSRESL).

Requirement: You must install the following two exits into your IMS Connect

resource library, regardless of whether you intend to customize them, because IMS

Connect automatically loads these exits when it executes:

v HWSJAVA0

v HWSUINIT

You must compile and link-edit these exits before you execute IMS Connect, or else

IMS Connect will not run. If you do not need to customize either of these two

exits, you do not need to do anything else with them.

Related Reading:

v Appendix D, “IMS Connect JCL,” on page 197 provides sample JCL examples to

assist you when link-editing and compiling the HWSJAVA0, HWSUINIT,

HWSSMPL0, HWSSMPL1, and HWSYDRU0 exits.

Installing HWSJAVA0, HWSUINIT, HWSYDRU0, HWSSMPL0,

and HWSSMPL1

The exits HWSJAVA0, HWSUINIT, HWSSMPL0, HWSSMPL1, and HWSYDRU0 are

installed into ADFSSRC (the source library) during the IMS Connect installation

process. HWSSMPL0, HWSSMPL1, HWSJAVA0, HWSUINIT, and HWSYDRU0 are

not placed in the load library, and they are not link-edited into the IMS Connect

resource library (SDFSRESL) during the installation process. This is to ensure that

Customizing IMS Connect

30 IMS Connect Guide and Reference

subsequent IMS Connect installations and SMP/E maintenance do not destroy

your copies of these exits in either the load library or in your IMS Connect

resource library.

Requirement: You must install the following two exits into your IMS Connect

resource library (SDFSRESL), regardless of whether you intend to use them,

because IMS Connect automatically loads them:

v HWSJAVA0

v HWSUINIT

If these two exits are not present, IMS Connect will not run. If you do not need to

customize either of these two exits, you do not need to do anything else with

them.

You need to install the HWSSMPL0, HWSSMPL1, and HWSDRU0 exits only if you

want to use the features that they support. HWSSMPL0 will no longer be enhanced

after the IMS Connect Version 9 release. It is recommended that you migrate from

HWSSMPL0 to HWSSMPL1 to obtain future function support.

Requirement: Compile and link-edit the HWSYDRU0 exit into your IMS resource

library (SDFSRESL), not the IMS Connect resource library (SDFSRESL). Otherwise,

OTMA will not be able to use the HWSYDRU0 exit.

All five of these exits can be used as shipped or can be modified (customized). See

“Modifying HWSJAVA0, HWSUINIT, HWSSMPL0, HWSSMPL1, and HWSYDRU0”

on page 32 for more information about modifying these five exits.

To install an exit into the IMS Connect resource library, you compile and link-edit

the exit into the IMS Connect resource library (in other words, into SDFSRESL).

The required macros for each exit are shipped in the SHWSMAC library.

The following table describes the link-editing requirements for installing each of

the four exits.

 Table 3. Link-Editing Requirements

Exit Name Installation

Required?

Link-editing Requirements

HWSJAVA0 Yes Link-edit this exit using its given name.

HWSUINIT Yes Link-edit this exit using its given name.

HWSYDRU0 No You can link-edit this exit using its given name or

you can supply your own name. You specify the

name used for the exit on the DATASTORE statement

for DRU= in the IMS Connect configuration file.

Note: This exit is not required unless you plan to

support asynchronous output with IMS Connect. If

so, an OTMA DRU exit (either HWSYDRU0 or

DFSYDRU0 or your own DRU exit) must exist in

your IMS system. See IMS Version 9: Open

Transaction Manager Access Guide and Reference for

more information.

Customizing IMS Connect

Chapter 2. IMS Connect Definition and Tailoring 31

Table 3. Link-Editing Requirements (continued)

Exit Name Installation

Required?

Link-editing Requirements

HWSSMPL0 No You can link-edit this exit using its given name or

you can supply your own name. You specify the

name used for the exit on the TCPIP statement for

EXIT= in the IMS Connect configuration file.

Important: This exit is shipped with all

asynchronous output support options as able to be

activated based on the IRM input. If you want to

support only the ″noauto″ asynchronous output

message management function, then you do not

need to modify this exit.

HWSSMPL1 No You can either link-edit this exit using its given

name, or supply your own name. Specify the name

used for the exit on the TCPIP statement for EXIT=

in the IMS Connect configuration file. Important:

HWSSMPL1 is shipped with all asynchronous

output support options capable of activation based

on the IRM input. If you want to support only the

“noauto” asynchronous output message

management function, do not modify this exit.

Modifying HWSJAVA0, HWSUINIT, HWSSMPL0, HWSSMPL1,

and HWSYDRU0

Before you modify an exit, make a copy of that exit, and rename the copy. Having

this copy will enable you to control the modifications to the exit. Also, if you

provide your own user message exit or user initialization module, the exit or

module must be written in Assembler.

If you modify or write your own user message exit and you perform any function

that results in an MVS wait state, all processing of work that is executed on the

TCP/IP port will be suspended for the duration of that wait state.

In addition, any user-written programs that are called by IMS Connect user

message exits or user initialization modules must also be written in Assembler. To

customize, modify, and re-install the HWSJAVA0, HWSUINIT, HWSSMPL0,

HWSSMPL1, and HWSYDRU0 exits, complete the following steps:

1. Make your changes to the source code provided in the ADFSSRC source library

(see the Program Directory for IBM IMS Connect for OS/390 for more information

about the ADFSSRC source library).

2. Assemble the exit. The exit and its associated macro files are members of the

partitioned data set into which you receive the ADFSSRC data set, as described

in the IMS Connect installation procedures in the Program Directory for IBM IMS

Connect for OS/390. See Table 2 on page 28 for a list of the macro files that are

associated with each exit.

3. Link-edit the output from the assembled job to create a load module named

HWSxxxxx, where xxxxx is the name of the exit that you are link-editing.

Requirements:

v Link-edit the HWSJAVA0, HWSUINIT, HWSSMPL0, and HWSSMPL1 exits

into the IMS Connect resource library SDFSRESL.

v Link-edit the HWSYDRU0 exit into the IMS resource library SDFSREL. Doing

this enables OTMA to use the exit.

Customizing IMS Connect

32 IMS Connect Guide and Reference

|
|
|
|

|
|
|
|

4. Link-edit the resulting load module into the appropriate resource library.

v If you are customizing HWSJAVA0, HWSUINIT, HWSSMPL0, or

HWSSMPL1, link-edit the load module into your IMS Connect resource

library (SDFSRESL). IMS Connect loads the module from its resource library

during initialization.

v If you are customizing HWSYDRU0, link-edit the load module into the IMS

resource library SDFSRESL. IMS loads the exit HWSYDRU0 when IMS

Connect initializes.
5. For HWSSMPL0 and HWSSMPL1: You also need to modify the IMS Connect

configuration file so that it includes the HWSSMPL0 and/or HWSSMPL1 user

exits in the TCPIP statement, as follows:

TCPIP=(...,EXIT=(HWSSMPL0,HWSSMPL1),..). Then restart IMS Connect.

Related Reading:

v The user message exit structures are described in “User Exit Message

Description and Structures” on page 60.

v HWSYDRU0, the sample destination resolution (DRU) exit, is described in

Chapter 4, “IMS Connect DRU Exit for Asynchronous Output Support,” on page

77.

v HWSUINIT, the sample user initialization exit, is described in Chapter 5, “IMS

Connect User Initialization Exit Support,” on page 79.

v Appendix D, “IMS Connect JCL,” on page 197 provides sample JCL examples to

help you link-edit and compile the HWSJAVA0, HWSUINIT, HWSSMPL0,

HWSSMPL1, and HWSYDRU0 exits.

Modifying User Message Exits to Provide Trusted User

Support

Trusted user support allows you to define and identify a client input message as a

trusted IMS Connect user so that the IMS Connect RACF call to IMS can be

bypassed. IMS is not involved in identifying trusted users.

To define a client input message as a trusted user, select a field in the IRM header

that will identify the trusted user to a user message exit. For example, you can

specify one of the PORTID, CLIENTID, USERID, TRANSACTION CODE fields, or

user data to identify a trusted user. The user message exit evaluates the client

input message based on the trusted user identifier and determines whether or not

the input message is from a trusted user. If the input is from a trusted user, the

user message exit requests IMS Connect to bypass the IMS Connect RACF call to

IMS if RACF=Y is specified for IMS Connect.

To provide trusted user support, you must define and provide most of the logic in

the client code and in the user message exits (HWSSMPL0 and HWSSMPL1) or in

your own user message exit.

Sample logic (which is commented out) is provided in both HWSSMPL0 and

HWSSMPL1 and can be found by looking for the following comment lines:

**

**************TRUSTED USER SUPPORT**************

**

You must define one or more fields (user-defined length) in the IRM user portion

to be set by the client code and analyzed by the user message exit. For example,

you may decide to add three one-byte fields in the IRM and set different values in

Customizing IMS Connect

Chapter 2. IMS Connect Definition and Tailoring 33

each field. When the message is passed to the user message exit, the exit

interrogates those three fields to determine if the connection should be treated as a

trusted user.

If the connection is treated as a trusted user, the exit will return to IMS Connect in

the OTMA User Data Header, field OMUSR_FLAG2 set to OMUSR_TRSTUSR, to signal to

IMS Connect to bypass issuing the RACF authentication call. You may also base

the trusted user on other values in the IRM, such as ClientID, UserID, Port

number, IP address, or any other data that you wish to use.

IMS Connect does not define which flag bytes in the IRM to set or what settings to

use. You must define the IRM bytes and byte settings so that the definitions are

unique to your system.

Trusted user is only supported through user-written user message exits and

through the IMS Connect-supplied user message exits HWSSMPL0 and

HWSSMPL1. Because HWSIMSO0 and HWSIMSO1 are not shipped as source code,

they do not support Trusted user. If you are currently using HWSIMSO0,

HWSIMSO1, or both and want to use trusted user support, you must change and

use HWSSMPL0, HWSSMPL1, or both, and provide the changes described above.

The user message exit, HWSCSLO0, and the IMS Control Center do not support

the trusted user function. IMS Connector for Java also does not support the trusted

user function. However, you can modify the HWSJAVA0 user message exit and use

other criteria to determine if the client is a trusted user.

You can modify the HWSJAVA0 exit based on the existing data in the OTMA

headers such as OMUSR_DESTID (DataStore), OMUSR_ORIGIN (ClientID),

OMUSR_PORTID (PortId), OMUSR_PASSTICKET (Password), or other message

values to determine if this input is from a trusted user client that does not need

authentication. If the HWSJAVA0 exit determines that the message is from a

trusted user client, you can set OMUSR_FLAG2 to OMUSR_TRSTUSR. By

changing the OMUSR_FLAG2 value to OMUSR_TRSTUSR, IMS Connect bypasses

the RACF call if RACF=Y was specified in the IMS Connect configuration file

(HWSCFG nn) or if the SETRACF ON command was issued.

Modifying HWSSMPL0 and HWSSMPL1 for PassTicket

When you implement PassTicket support and send an APPLname in the IRM field,

(IRM_APPL_NM) you must ensure that the logic in the user message exit is

modified to check for a new minimum length in the llll field. The llll field must be

modified from a minimum length of 88 to minimum length of 96. The IRM length

must also be modified from 80 to 88. Another option is to comment out the length

comparison in the user message exit.

Modifying HWSIMSO0 and HWSIMSO1

The HWSIMSO0 and HWSIMSO1 user message exits replace the EZAIMSO0 exit

that was previously provided by TCP/IP. You must use one of these exits to

replace the TCP/IP EZAIMSO0 exit. You can, however, either customize the

linkedit of either of these exits to include a security exit (IMSLSECX), or provide

an installation-specific name instead of HWSIMSO0 or HWSIMSO1 in the linkedit

step.

Customizing IMS Connect

34 IMS Connect Guide and Reference

IMS Connect Version 9 is the final release of these two user message exits.

HWSIMSO0 and HWSIMSO1 will not be available in any future release of IMS

Connect. It is recommended that you migrate to HWSSMPL1 to support future

enhancements to IMS Connect.

Requirements:

v If you want to use your own security checking routine, it must be called

IMSLSECX.

v You can change the names of HWSIMSO0 and HWSIMSO1 in the link-edit step.

If you change the names, you must remember to specify the new names in the

IMS Connect configuration file. You then need to specify the names in the IMS

Connect EXIT=(exitname1,exitname2) parameter of the TCPIP statement in the

IMS Connect configuration file. See “Creating the IMS Connect Configuration

Member” on page 9 for more information about modifying the IMS Connect

configuration file.

The HWSIMSO0 and HWSIMSO1 user message exits are installed as part of

HWSxxxxx module installation.

The following lines are the INCLUDE statements for HWSIMSO0 and HWSIMSO1:

//SYSLIN DD *

INCLUDE LOAD(HWSIMSO0)

ENTRY HWSIMSO0

MODE RMODE(24),AMODE(31)

NAME HWSIMSO0(R)

INCLUDE LOAD(HWSIMSO1)

ENTRY HWSIMSO1

MODE RMODE(24),AMODE(31)

NAME HWSIMSO1(R)

Note: The dependency on the TCP/IP library to detect the inclusion of the TCP/IP

translate tables is no longer required.

If you want to use security checking (either the IMSLSECX file that comes with

TCP/IP or your own IMSLSECX file), you must add the following INCLUDE

statement.

 INCLUDE USERLOAD(IMSLSECX)

HWSIMSO0 and HWSIMSO1 do not support the trusted user function.

Installing HWSCSLO0 and HWSCSLO1

The HWSCSLO0 and HWSCSLO1 user message exits are provided as OCO code

and is present in the Load library that is delivered with IMS Connect. The

HWSCSLO0 and HWSCSLO1 user message exits are only valid with support of the

IMS Control Center.

Requirements:

v HWSCSLO0 and HWSCSLO1 exit names must be added to the TCPIP statement

EXIT= (exitname1, exitname2) parameter if the IMS Control Center support is

made available. If the IMS Control Center is not supported in your installation,

do not add this exit to the TCPIP statement EXIT= (exitname1, exitname2)

parameter.

v HWSCSLO0 and HWSCSLO1 are included in the install process of IMS Connect.

Customizing IMS Connect

Chapter 2. IMS Connect Definition and Tailoring 35

|
|
|
|
|
|
|

Installing HWSSOAP1

The HWSSOAP1 user message exit is provided as OCO code and is present in the

load library that is delivered with IMS Connect. The HWSSOAP1 user message exit

is only valid with IMS SOAP Gateway and is used as part of the IMS Connect

support for XML-to-COBOL data conversion for IMS SOAP Gateway.

Requirements:

v HWSSOAP1 exit name must be added to the TCPIP statement EXIT=(exitname1,

exitname2) parameter if the XML-to-COBOL data conversion support is enabled.

If you do not use the IMS SOAP Gateway, do not include this exit in the TCPIP

statement EXIT parameter.

v HWSSOAP1 is included in the install process of IMS Connect.

Configuring XML-to-COBOL Conversion Support for IMS SOAP

Gateway

IMS Connect can convert the XML data contained in an IMS SOAP Gateway input

message into the COBOL data used by a COBOL IMS application program. The

COBOL data in the corresponding output message is also converted from COBOL

back to the XML data that IMS SOAP Gateway client expects.

The IMS Connect XML-to-COBOL conversion support enables IMS to accept IMS

SOAP Gateway messages in an XML format without having to create or modify

IMS application programs to support XML.

The IMS Connect XML-to-COBOL conversion support uses the HWSSOAP1 user

message exit to identify the appropriate XML adapter and XML converter. IMS

Connect calls the XML adapter, which serves as the interface to the XML converter.

The XML converter is designed according to the COBOL copybook of the COBOL

IMS application program that processes the IMS SOAP Gateway input messages.

After the XML data has been converted to COBOL data, the input message is

processed by the other IMS Connect user message exit and passed to OTMA.

For information about the XML and COBOL data structures of converted input and

output messages, see Chapter 10, “IMS Connect XML Message Conversion,” on

page 143.

Prerequisites to IMS Connect XML Conversion Support

Before you can configure IMS Connect to convert XML data in IMS SOAP Gateway

input messages to COBOL application data, you must meet the following

prerequisites:

v Apply IMS Version 9 APARs PK24912 V9 and PK29938.

v You must have the copybook for the COBOL IMS application program that

processes the input messages from IMS SOAP Gateway.

v You must increase the IMS Connect region size to accommodate the storage used

by the XML converters. The XML converters run in a z/OS LE enclave in the

IMS Connect region and use about 33 MB of storage.

v You must have IMS SOAP Gateway Version 9.2 or above. You can download

IMS SOAP Gateway online at www.ibm.com/software/data/ims/soap/.

Customizing IMS Connect

36 IMS Connect Guide and Reference

|

|
|
|
|

|

|
|
|
|

|

|

|

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|
|

|

|
|
|

|

|
|

|
|
|

|
|

Restrictions to IMS Connect XML Conversion Support

The following restrictions exist to the XML data conversion support provided by

IMS Connect:

v IMS SOAP Gateway Version 9.2 is the only supported IMS Connect client.

v XML adapter only supports conversion of single segment messages.

v Inbound and outbound messages must be encoded in UTF-8 since SOAP

Gateway Version 9.2 only supports UTF-8. This encoding must match the

encoding of the XML Converter that is being requested.

v IMS Connect provides XML conversion support for commit mode 1 and sync

level 0 messages.

Steps for Configuring IMS Connect XML Conversion Support

To configure IMS Connect to convert IMS SOAP Gateway XML data into COBOL

IMS application program data, you must perform the following basic steps:

1. Include the ADAPTER configuration statement, ADAPTER=(XML=Y), in the IMS

Connect configuration member.

2. Specify the HWSSOAP1 user message exit in the EXIT= parameter of the TCPIP

configuration statement.

3. Define the XML adapter as a Base Primitive Environment (BPE) exit routine for

IMS Connect by coding a BPE exit list PROCLIB member and specifying it in

the BPE configuration parameter PROCLIB member:

a. Create a BPE exit list PROCLIB member with any name, for example

HWSEXIT0. In the BPE exit list PROCLIB member, define the XML Adapter

(HWSXMLA0) as an exit by setting the following EXITDEF statement:

EXITDEF(TYPE=XMLADAP,EXITS=(HWSXMLA0),ABLIM=8,COMP=HWS)

All parameters must be coded as shown except for ABLIM, which sets the

number of times the XML adapter can abend before it is disabled.

b. Set the BPE exit list PROCLIB member in the BPE configuration parameter

PROCLIB member by adding an EXITMBR statement. For example, if the

BPE exit list PROCLIB member is HWSEXIT0, then add the following

statement to the BPE configuration member:

EXITMBR=(HWSEXIT0,HWS)

4. Configure the z/OS Unicode Conversion Services to support character

conversions from UTF-8 to EBCDIC and from EBCDIC to UTF-8. Most likely,

your z/OS system administrator will perform this task. For more information

about z/OS Unicode support, see z/OS support for Unicode: Using Conversion

Services.

5. Configure IMS SOAP Gateway. For detailed configuration instructions, see the

IMS SOAP Gateway documentation.

6. Provide an XML converter to convert the XML data to the COBOL data that the

IMS application expects. The XML converter must also convert the COBOL data

in the reply message back to the XML data expected by the IMS SOAP

Gateway client.

XML converters are COBOL application programs that are based on the

copybook of the COBOL IMS application program that processes the incoming

transactions from IMS SOAP Gateway. The recommended method of creating

the XML converters is by using the separately licensed tool WebSphere

Developer for zSeries® (Version 6 or above) to automatically generate the

converters. You can find an example of an XML converter by downloading the

Customizing IMS Connect

Chapter 2. IMS Connect Definition and Tailoring 37

|

|
|

|

|

|
|
|

|
|

|

|
|

|
|

|
|

|
|
|

|
|
|

|

|
|

|
|
|
|

|

|
|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|

IMS SOAP Gateway Phone Book Sample from the IMS SOAP Gateway home

page at www.ibm.com/software/data/ims/soap/.

7. Compile and link the XML converter into an APF-authorized data set that is

concatenated to the STEPLIB in the IMS Connect startup JCL.

When linking the converter, specify the Converter Metadata Aggregate Service

program name as an ALIAS in the link job. The Converter Metadata Aggregate

Service program name has the same name as the converter, except that the last

character of the name is an X. For example, if the converter name is

CNVNAMED, then the Converter Metadata Aggregate Service name is

CNVNAMEX.

Example Configuration Statements for XML Conversion

Support

The following example shows the IMS Connect configuration statement

specifications required to enable the XML-to-COBOL data conversion function of

IMS Connect:

* HWS EXAMPLE OF INCLUDING XML ADAPTER SUPPORT

HWS (ID=HWS8,RACF=Y,XIBAREA=20)

TCPIP (HOSTNAME=MVSTCPIP,RACFID=RACFID,

PORTID=(9999,LOCAL),MAXSOC=2000,TIMEOUT=8800,

EXIT=(HWSSMPL1,HWSSOAP1))

ADAPTER (XML=Y)

JCL to Print IMS Connect RECORDER Output

IMS Connect provides a line trace function to capture data that is received from

and sent to a client. The line trace contains a copy of the first 670 bytes of the data

as it is passed to the user message exit and upon return from the user message

exit. Line traces are intended for use in problem resolution.

Use the RECORDER command to activate and terminate the line trace function. The

following sample JCL illustrates how to print the line trace data set:

//IDCAMS JOB JOB 1,IDCAMS,MSGLEVEL=1,CLASS=K,TIME=1440

//SELECT EXEC PGM=IDCAMS

//DD1 DD DSNAME=HWSRCDR,DISP=SHR

//SYSPRINT DD SYSOUT=*

//SYSIN DD *

 PRINT INFILE(DD1)

Customizing IMS Connect

38 IMS Connect Guide and Reference

|
|

|
|

|
|
|
|
|
|

|

|

|
|
|

|
|
|
|
|
|
|
|
|

|

Chapter 3. IMS Connect User Message Exit Support

IMS Connect communicates with clients through TCP/IP sessions (including SSL

sessions) and Program Call interface for local support using the IRM message

header that is defined in the HWSIMSCB macro. IMS Connect communicates with

OTMA through an XCF session using the OTMA message headers. Clients that use

TCP/IP socket calls as their communication vehicle can design a user message exit

routine that runs with IMS Connect to convert messages between formats as

follows:

v Convert the client message format to OTMA message format.

v Convert the IMS response, in OTMA message format, to client message format.

These conversions enable the client to retrieve IMS data through a TCP/IP

connection. IMS Connect automatically sends and receives messages when they are

formatted correctly.

Related Reading:

v Chapter 4, “IMS Connect DRU Exit for Asynchronous Output Support,” on page

77 describes HWSYDRU0, which is a sample OTMA Destination Resolution

(DRU) exit that can be used to support asynchronous output that is generated

by an IMS application.

v Chapter 5, “IMS Connect User Initialization Exit Support,” on page 79 describes

HWSUINIT, which is a user initialization exit routine that receives control at IMS

Connect initialization and termination time.

Attention: Do not issue any MVS calls in the user message exit that result in an

MVS WAIT. If you modify the user message exit and add code that results in an MVS

WAIT, all work on the TCP/IP PORT will halt until the WAIT has been posted. The

user message exits cannot be modified to free any storage passed to the exit, and

IMS Connect will not free any storage obtained by the user message exit when the

exit returns to IMS Connect. All storage obtained by IMS Connect must be released

by IMS Connect and cannot be freed by the user message exit without causing

failures.

In this chapter:

v “How IMS Connect Communicates with a TCP/IP Client”

v “How IMS Connect Communicates with an SSL Client” on page 49

v “How IMS Connect Communicates with User Message Exits” on page 49

v “User Exit Message Description and Structures” on page 60

v “Macros” on page 74

How IMS Connect Communicates with a TCP/IP Client

IMS Connect expects all client messages that it receives to start with a four byte

total length field, followed by a common 28 (decimal) byte message IRM prefix. At

your option, you can add data following the common 28 (decimal) byte IRM prefix

if you are providing your own user message exit or are modifying HWSSMPL0 or

HWSSMPL1. Because HWSSOAP1, HWSIMSO0, and HWSIMSO1 are not provided

as source, you cannot change the IRM for these exits. The IRM also cannot be

modified for HWSJAVA0 user message exit.

© Copyright IBM Corp. 2000, 2007 39

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

If you add or delete items that follow the common IRM section (first 28 bytes), you

must also adjust the user message exits that you use, or provide your own user

message exits.

Note: However, the user message exits, HWSCSLO0 and HWSCSLO1, do not have

any message definitions because HWSCSLO0 and HWSCSLO1 cannot be

modified or replaced.

Table 4 shows the fixed format preceding the input message sent to IMS Connect

from clients. It includes the message field, the field length, and a brief explanation

of the message.

Subsections:

v “Format of Fixed Portion of IRM in Messages Sent to IMS Connect”

v “Format of User Portion of IRM for HWSSMPL0, HWSSMPL1, and User-Written

Message Exit Routines” on page 43

Format of Fixed Portion of IRM in Messages Sent to IMS

Connect

Table 4 shows the fixed format preceding the input message sent to IMS Connect

from clients. It includes the message field, the field length, and a brief explanation

of the message.

The llll field tells IMS Connect how long the message is, and the IRM provides

additional information, such as the specific user exit to which the data is to be

passed.

IMS Connect supports client applications written for IMS TOC 2.1.3 without any

application modifications to the current message structure.

The base structure for non-IMS Connector for Java clients is shown in Table 4. The

base structure contains the four byte llll total message length field, the 28-byte

message IRM prefix, and the user-defined structure.

For more information about the IRM_TIMER function mentioned in the following

table, see “Time-out intervals on input messages” on page 110.

IMS Connect supports client applications written for IMS TOC 2.1.3 without any

application modifications to the current message structure.

 Table 4. Format of Common Fixed Portion of IRM Prefix

Field Length Meaning

Message field.

llll 4 bytes Length of the total message. The total message length includes the length of the IRM

(variable, depending on your requirements), the llll field (four bytes), the length of the

message, and the end of message indicator X'0004000' (four bytes). The minimum value is

X'58'. The maximum value is X'00989680' (10,000,000 bytes) for IMS Connector for Java and

any positive value for non-IMS Connector for Java clients. This field is read as a binary

number.

The following fields are for the 28 (decimal) byte IRM prefix.

IRM_LEN 2 bytes Length of the IRM structure. The minimum size of the IRM for user written exits is X'24' or

binary ’00100100’. HWSIMSO0 and HWSSMPL0 have a minimum IRM length of X'50' or

binary ’01010000’.

Communication with TCP/IP Clients

40 IMS Connect Guide and Reference

|

|

Table 4. Format of Common Fixed Portion of IRM Prefix (continued)

Field Length Meaning

IRM_ARCH 1 byte Specifies the architectural level of the IRM prefix in messages received by IMS Connect from

the client.

v X'00' Specifies IRM_ARCH0, the base architectural structure of the user portion of the IRM

prefix.

v X'01' Specifies IRM_ARCH1, the architectural structure of the user portion of the IRM

prefix that includes space for:

– The IRM_REROUT_NM field

– The IRM_RT_ALTCID field

v X'02' Specifies IRM_ARCH2, the architectural structure of the user portion of the IRM

prefix that includes space for:

– The IRM_REROUT_NM field

– The IRM_TAG_ADAPT field

– The IRM_TAG_MAP field

For more information about the fields listed above, see Table 5 on page 44.

IRM_F0 1 byte

v X'01' Specifies IRM_F0_XMLTD, which indicates a request from an IMS SOAP Gateway

client to convert an XML tagged message that contains both a transaction code and data

into the format expected by the IMS application program.

v X'02' Specifies IRM_F0_XML_D, which indicates a request from an IMS SOAP Gateway

client for conversion of an XML tagged message that contains data only into the format

expected by the IMS application program.

IRM_ID 8 bytes Character string. Specifies the identifier of the user exit that is to be driven after the complete

message has been received. Additionally, IMS Connect reads this field to determine whether

the incoming message is in ASCII or EBCDIC. The IMS Connect-supplied user message exits

reserve and use these IDs:

v *IRMRE1*-- for HWSIMSO1

v *IRMREQ*-- for HWSIMSO0

v *HWSCSL*-- for HWSCSLO0

v *HWSJAV*-- for HWSJAVA0

v *HWSOA1*-- for HWSSOAP1

v *SAMPL1*-- for HWSSMPL1

v *SAMPLE*-- for HWSSMPL0

Reserved 4 bytes Reserved for future use. Initialize to binary zeros.

Communication with TCP/IP Clients

Chapter 3. IMS Connect User Message Exit Support 41

|

|||
|
|
|
|
|

|

Table 4. Format of Common Fixed Portion of IRM Prefix (continued)

Field Length Meaning

IRM_F5 1 byte Input message type.

X'80' OTMA headers built by client.

X'40' Translation done by client.

X'10' Single message with wait option. Only one message returned following

RESUME TPIPE. If no message is present, OTMA waits for a message to

arrive and then sends that single message to IMS Connect. The timer set

on RESUME TPIPE can expire before a message is returned to IMS

Connect. If that occurs, IMS Connect will NAK the message when

received.

X'00' No option flow of messages (see meaning for X'04'). This is the default if

no value is specified.

X'01' Single message. Only one message returned following RESUME TPIPE. If

no message is present, OTMA does not wait for a message and the IMS

Connect timer causes a timeout to occur based on the timeout value

specified.

X'02' Auto flow of messages. All current messages are returned one at a time.

Use the auto flow option only if the client is a dedicated output client.

 Set the IRM_TIMER to a large value. Each ACK sent by the client resets

the IRM_TIMER value. The IRM_TIMER value set by the RESUME_TPIPE

only applies to the first receive state.

X'04' No auto flow of messages. All current messages are returned one at a

time.

 Use the no auto flow option only if the client is a dedicated output client.

This value is similar to Auto, except that the IRM_TIMER will cause the

last receive to terminate.

 Set the IRM_TIMER to a small value. Each ACK sent by the client resets

the IRM_TIMER value. The IRM_TIMER value set by the RESUME_TPIPE

only applies to the first receive state.

X'08' XID included in message.

For more information about the IRM_TIMER function, see “Time-out intervals on input

messages” on page 110.

IRM_TIMER 1 byte Time delay that IMS Connect will wait for IMS to return data to IMS Connect which, in turn,

will be sent to the client. The following functions support the IRM_TIMER settings:

v TCP/IP SEND of a RESUME TPIPE

v TCP/IP SEND of an ACK or NAK

v TCP/IP SEND of data

v PC SEND of a RESUME TPIPE

v PC SEND of an ACK or NAK

v PC SEND of data

Related reading: “Time-out intervals on input messages” on page 110.

IRM_SOCT 1 byte Socket connection type. The client can set this value as follows:

v X'00' - transaction socket. The socket connection lasts across a single transaction.

v X'10' - persistent socket. The socket connection lasts across multiple transactions.

v X'40' - non-persistent socket. The socket connection lasts for a single exchange consisting of

one input and one output. Recommendation: Do not use this socket type if you plan on

implementing conversational transactions, because multiple connects and disconnects will

occur.

Communication with TCP/IP Clients

42 IMS Connect Guide and Reference

||
|
|
|
|
|

||
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

||

Table 4. Format of Common Fixed Portion of IRM Prefix (continued)

Field Length Meaning

IRM_ES 1 byte Unicode encoding schema. Initialize to binary zeros.

v X'01' UTF8 encoding schema.

v X'02' UCS2 encoding schema.

v X'02' UTF16 encoding schema.

IRM_CLIENTID 8 bytes A string of 1 to 8 uppercase alphanumeric (A through Z, 0 to 9) or special (@, #, $) characters,

left justified, and padded with blanks. IRM_CLIENTID specifies the name of the client ID that

is used by IMS Connect. If this string is not supplied by the client, then the user exit must

generate it.

The client ID is returned to IMS Connect from the exit in the EXIT PARMLIST field,

EXPREA_CLID.

Format of User Portion of IRM for HWSSMPL0, HWSSMPL1,

and User-Written Message Exit Routines

Following the four-byte length field and the 28 byte fixed portion of the IRM in

IMS Connect client input messages, user-written client applications supported by

HWSSMPL0, HWSSMPL1, or user-written message exits can include a user-defined

section in the IRM. Table 5 shows the format of the user portion of the IRM used

by HWSSMPL0, HWSSMPL1, and other user-written user message exits.

The IMS data follows the user portion of the IRM and must be in the format of

LLZZDATA, where LL is the total length of message segment (including the LL

field), ZZ is binary zeros, and DATA is the IMS transaction code followed by the

transaction data.

The last 11 rows of Table 5 contain Product-Sensitive Programming Interface and

Associated Guidance Information.

If you are using IMS Connect client applications such as IMS TM resource adapter,

IMS SOAP Gateway, or the IMS Control Center, you cannot include a user-defined

portion in the IRM.

For the format of the fixed portion of the IRM, see “Format of Fixed Portion of

IRM in Messages Sent to IMS Connect” on page 40.

For the complete message structure used by the HWSSMPL0 and HWSSMPL1

exits, see the table under“Non-IMS Connector for Java Message Structure - Type 2”

on page 66.

Table 5 shows an example of the IRM prefix format preceding the input message.

This format is used by the HWSIMSO0, HWSIMSO1, HWSSMPL0, and

HWSSMPL1 exits. Following the IRM structure is the IMS data that is composed of

LLZZDATA where LL= the total length of this segment (includes LL=length,

ZZ=binary zeros, and DATA=IMS trancode followed by transaction data).

The last 11 rows of Table 5, as well as the paragraph immediately following the

table, contain Product-Sensitive Programming Interface and Associated Guidance

Information.

Communication with TCP/IP Clients

Chapter 3. IMS Connect User Message Exit Support 43

|

Table 5. Format of User Portion of Messages for HWSIMSO0, HWSIMSO1, HWSSMPL0, and HWSSMPL1 Exit

Routines

Field Length Meaning

Message field.

llll 4 bytes Length of the total message. The total message length includes the length of the IRM

(variable, depending on your requirements), the HDR_LLLL field (four bytes), the

length of the message, and the end of message indicator X'0004000' (four bytes). The

value is between X'58' and X'7FFFFFFF'. This field is read as a binary number.

Fixed-format IRM 28 bytes The format of the common, fixed portion of the IRM prefix is documented in

“Format of Fixed Portion of IRM in Messages Sent to IMS Connect” on page 40.

IRM_F1 1 byte This value is used to specify either that the MFS mod name is to be returned or that

the message or transaction code is in Unicode.

v X'80' - user requests MFS mod name to be returned.

v X'20' - The message is in Unicode.

v X'10' - The transaction code is in Unicode.

v X'00' - The user requests that no MFS MOD name to be returned.

If this value is not supplied by the client, the user exit must use a default value.

The MFS mod name flag is returned to IMS Connect from the exit in the EXIT

PARMLIST field, EXPREA_UFLAG1.

IRM_F2 1 byte It specifies the commit mode.

v X'40' - commit mode ’0’

v X'20' - commit mode ’1’

If this value is not supplied from the client, the user exit must use a default value.

The commit mode flag is returned to IMS Connect from the exit in the OTMA

header field, OMHDRSYN.

IRM_F3 1 byte Depending on the value, this field specifies the sync level, the purge or reroute

option for CM0 output, or the serial delivery option for send-only input.

v X'00' - sync level is ’NONE’

v X'01' - sync level is ’CONFIRM’

v X'02' - sync level is ’SYNCPT’

v X'04' - purge undeliverable CM0 output (IRM_F3_PURGE)

v X'08' - reroute undeliverable CM0 output (IRM_F3_REROUT)

v X'10' - Send-only with serial delivery (IRM_F3_ORDER). IRM_F3_ORDER invokes

the serial delivery option for a send-only transaction.

For Commit Mode 0, the sync level must be set to confirm. If the synch level is not

supplied from the client, the user exit must use a default value.

The sync level flag is returned to IMS Connect from the exit in the OTMA header

field, OMHDRSLV.

The purge not deliverable flag is returned to IMS Connect from the user message

exit in the OTMA header field, OMHDRCFL, with the setting of OMHDRPND X'10'.

If the reroute flag is set, the IRM_REROUT_NM field is optional.

You cannot specify the purge not deliverable function and the reroute function at the

same time. If both functions are specified, the output messages are neither purged

nor rerouted and OTMA issues message DFS2407W.

Communication with TCP/IP Clients

44 IMS Connect Guide and Reference

|

|
|
|

Table 5. Format of User Portion of Messages for HWSIMSO0, HWSIMSO1, HWSSMPL0, and HWSSMPL1 Exit

Routines (continued)

Field Length Meaning

IRM_F4 1 byte The IRM_F4 flag identifies the type of message being sent by the client. The message

types are specified by character values (ASCII or EBCDIC) as shown in the following

list:

A ACK (IRM_F4_ACK) - This message is an ACK response to output received

from IMS Connect. ACK is used by a client to indicate the acceptance of an

output message only when the original input message from the client specifies

a SYNC level of CONFIRM.

C Cancel IRM timer (IRM_F4_CANTIMER) - This message is a request to cancel

the IRM timer associated with another connection on which the client, using the

same clientID, is waiting for output data from IMS.

D Deallocate (IRM_F4_DEALLOC) - This message is a request to deallocate the

conversation.

K Send only requires ACK (IRM_F4_SNDONLYA) - This message is a send-only

transaction message that requires an ACK response (SENDONLYA) from IMS

Connect. Use SENDONLYA to ensure that send only transaction inputs are

enqueued by IMS in the same order that they are submitted by the client

application program. SENDONLYA messages execute a send-only interaction

for a non-response mode, non-conversational transaction. If the host application

terminates without issuing an ISRT to the IO PCB, no DFS2082 messages are

returned to the client for SENDONLYA messages. It also specifies that IMS

Connect must indicate in its reply that an ACK or NAK of the output is

required from the client. The SENDONLYA interaction must use commit mode

0.

N NAK (IRM_F4_NACK) - This message is a NAK response to output received

from IMS Connect. NAK is used by a client to indicate the rejection of an

output message only when the original input message from the client specifies

a SYNC level of CONFIRM.

R RESUME TPIPE (IRM_F4_RESUMET) - This message is a RESUME TPIPE

request for asynchronous output data from IMS. A RESUME TPIPE call must

execute on a transaction or persistent socket using commit mode 0.

S Send only (IRM_F4_SENDONLY) - This message is a send only transaction

message that executes a send-only interaction for a non-response mode,

non-conversational transaction. If the host application terminates without

issuing an ISRT to the IO PCB, no DFS2082 messages are returned to the client

for send only transaction messages. The SENDONLY interaction must use

commit mode 0.

blank (X'40')

This is a send-receive interaction for a conversational or non-conversational

response mode transaction.

The value of IRM_F4 is sent to IMS Connect to be forwarded to IMS. When the

value is received and passed to the user exit, the exit builds the appropriate OTMA

structure and returns it to IMS Connect.

The following message types cannot contain a data element after the IRM:

v ACK (A)

v CANCEL TIMER (C)

v DEALLOCATE (D)

v NAK (N)

v RESUME TPIPE (R)

The following message types include application data after the IRM:

v SENDONLY (S)

v SENDONLYA (K)

v Send-receive (X'40')

Communication with TCP/IP Clients

Chapter 3. IMS Connect User Message Exit Support 45

|||
|
|

||
|
|
|

||
|
|

||
|

||
|
|
|
|
|
|
|
|
|
|

||
|
|
|

||
|
|

||
|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

Table 5. Format of User Portion of Messages for HWSIMSO0, HWSIMSO1, HWSSMPL0, and HWSSMPL1 Exit

Routines (continued)

Field Length Meaning

IRM_TRNCOD 8 bytes Character string. It specifies the IMS transaction code.

IRM_IMSDESTID 8 bytes Character string. It specifies the Datastore name (IMS destination ID). This field

must be specified by the client. The Datastore name is returned to IMS Connect from

the exit in the OTMA header field, OMUSR_DESTID.

IRM_LTERM 8 bytes Character string. It specifies the IMS LTERM override. This field can be set to a valid

name or to blanks.

The LTERM override name is returned to IMS Connect from the exit in the OTMA

header field, OMHDRLM.

For IMS host applications, the value for this field is set by the user message exit,

which either moves this value to the OTMA field OMHDRLTM or sets OMHDRLTM

with a predetermined value. If you have specified an LTERM override value, OTMA

places that value in the IOPCB LTERM field. If you do not specify an LTERM

override value, OTMA instead places the IMS Connect-defined TPIPE name in the

IOPCB LTERM field. The TPIPE name is set to the CLIENT ID if the commit mode is

zero; it is set to the PORT ID if the commit mode is one.

If you use the LTERM value in the IOPCB to make logic decisions, be aware of the

naming conventions of the IOPCB LTERM name.

IRM_RACF_USERID 8 bytes Character string. It specifies the RACF user ID. The client must provide it if RACF is

to be used.

The RACF user ID name is returned to IMS Connect from the exit in the OTMA

header field, OMSECUID.

IRM_RACF_GRNAME 8 bytes Character string. It specifies the RACF group name. The client must provide it if

RACF is to be used.

The RACF group name is returned to IMS Connect from the exit in the OTMA

header field, OMSECGRP.

IRM_RACF_PW 8 bytes Character string. It specifies the RACF PassTicket or PASSWORD. The client must

provide it if RACF is to be used.

The PassTicket or PASSWORD value is returned to IMS Connect from the user

message exit, in the OTMA header field, OMUSR_PASSTICK.

IRM_APPL_NM 8 bytes Character string. It specifies the RACF APPL name, that was defined to RACF on the

PTKTDATA definition. (This is not supported for HWSIMSO0 or HWSIMSO1.)

IRM_REROUT_NM 8 bytes Optional. Character string (A through Z, 0 to 9) or special characters (@,#,$). It

specifies the reroute tpipe name of the client reroute request. Blanks are

recommended for the default value.

When you specify the IRM_REROUT_NM field, you must also specify:

v IRM_F3_REROUT in the IRM_F3 field in the user portion of the IRM

v IRM_ARCH1 in the IRM_ARCH field in the common fixed portion of the IRM

To preserve the expected offset of this field, when you specify IRM_REROUT_NM,

you must also specify the following fields with valid values or blanks:

v IRM_RACF_USERID - Required only if a RACF groupname is provided;

otherwise, this field is optional.

v IRM_RACF_GRNAME - Required only if a RACF password is provided;

otherwise, this field is optional

v IRM_RACF_PW - Required only if a APPL name is provided; otherwise, this field

is optional

v IRM_APPL_NM - Required only if a REROUT name is provided; otherwise, this

field is optional

IRM_REROUT_NM and IRM_RT_ALTCID use the same offset. Both cannot be

specified on the same message.

Communication with TCP/IP Clients

46 IMS Connect Guide and Reference

|
|

|||

|||

|||
|
|

|||
|

|
|

|
|
|
|
|
|
|

|
|

|||
|

|
|

|||
|

|
|

|||
|

|
|

|||
|

|

Table 5. Format of User Portion of Messages for HWSIMSO0, HWSIMSO1, HWSSMPL0, and HWSSMPL1 Exit

Routines (continued)

Field Length Meaning

IRM_RT_ALTCID 8 bytes Alternate clientid for Resume Tpipe. This is an optional field. If the alternate client

id is provided, then the following IRM field must be set:

v IRM_ARCH to IRM_ARCH1

To preserve the expected offset of this field, you must also specify with valid values

or blanks the following fields:

v IRM_RACF_USERID - Required only if a RACF groupname is provided;

otherwise, this field is optional.

v IRM_RACF_GRNAME - Required only if a RACF password is provided;

otherwise, this field is optional

v IRM_RACF_PW - Required only if a APPL name is provided; otherwise, this field

is optional

v IRM_APPL_NM - Required only if a REROUT name is provided; otherwise, this

field is optional

IRM_RT_ALTCID and IRM_REROUT_NM use the same offset. Both cannot be

specified on the same message.

IRM_TAG_ADAPT 8 bytes Name of the adapter that IMS Connect calls to convert XML messages received from

IMS SOAP Gateway into COBOL and back again on return from IMS.

To preserve the expected offset of this field, when you include the

IRM_TAG_ADAPT field, you must also specify the following fields with valid values

or blanks:

v IRM_RACF_USERID

v IRM_RACF_GRNAME

v IRM_RACF_PW

v IRM_APPL_NM

v IRM_REROUT_NM or IRM_RT_ALTCID

IRM_TAG_MAP 8 bytes Name of the converter that the XML adapter calls to perform that actual conversion

of the XML messages received from IMS SOAP Gateway into COBOL and back

again on return from IMS.

To preserve the expected offset of this field, when you include the IRM_TAG_MAP

field, you must also specify the following fields with valid values or blanks:

v IRM_RACF_USERID

v IRM_RACF_GRNAME

v IRM_RACF_PW

v IRM_APPL_NM

v IRM_REROUT_NM or IRM_RT_ALTCID

v IRM_TAG_ADAPT

IRM_XID 140 bytes The XID for a global transaction in hexadecimal format. This field originates at the

same offset as IRM_MAP. When specified, it is the only field in the user portion of

the IRM.

 For the complete non-IMS Connector for Java message structure used by the

HWSIMSO0, HWSIMSO1, HWSSMPL0, and HWSSMPL1 exits, see the table under

“Non-IMS Connector for Java Message Structure - Type 2” on page 66.

Output from Client Exit

Table 6 on page 48 shows the structure (one occurrence per message) of the

message returned by the non-IMS Connector for Java client exit. The table lists the

field name, the length of the field, and a brief explanation of the field.

Communication with TCP/IP Clients

Chapter 3. IMS Connect User Message Exit Support 47

|||
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|||
|

|
|
|
|
|
|
|
|

|||
|
|

|
|
|
|
|
|
|
|

|

|

Table 6. Structure 1

Field Length Meaning

BPE header 64 bytes Defined in Table 8 on page

49.

OTMA structure Total length of OTMA

header

For more information about

the HWSOMPFX macro (full

OTMA structure) see

Appendix B, “OTMA

Headers,” on page 175.

LLZZTRANCODEDATA n bytes v LL - length of segment

v ZZ - set to binary zeros

v TRANCODE - IMS 1-8

byte transaction code

v DATA - user data

LLZZDATA n bytes v LL - length of segment

v ZZ - set to binary zeros

v DATA - user data

The LLZZDATA is repeated to a maximum of 32 KB overall length. If there is more data,

then the structures continues as shown in Table 7. Only the first segment will contain the

IMS transaction code and the following segment will contain the segment data necessary

for the transaction to process.

LL 2 bytes LL - set to binary zeros to

denote the end of this

structure. The LL field is not

part of the segment length.

Other IMS Connect Structures

Table 7 shows other structures that are repeated until all data has been mapped to

be returned to IMS Connect. The table lists the field name, the length of the field,

and a brief explanation of the field.

 Table 7. Structure 2

Field Length Meaning

BPE header 64 bytes Defined in Table 8 on page

49.

OTMA structure 32 bytes For more information about

the HWSOMPFX macro

(control OTMA structure

only), see Appendix B,

“OTMA Headers,” on page

175.

LLZZDATA n bytes v LL - length of segment

v ZZ - set to binary zeros

v DATA - user data

The LLZZDATA is repeated to a maximum of 32 KB overall length. If there is more data,

then the structures continues.

LL 2 bytes LL - set to binary zeros to

denote the end of this

structure.

Communication with TCP/IP Clients

48 IMS Connect Guide and Reference

Table 8 lists the fields in the BPE header layout. It also contains Product-Sensitive

Programming Interface and Associated Guidance Information.

 Table 8. BPE Header Layout

Field Length Meaning

llll 4 bytes The length of the total

structure and it is set for the

first BPE header only. This

field is managed by IMS

Connect and must not be

altered by the exit.

CHAIN PTR 4 bytes The chain pointer to the next

BPE header within this

message. The last BPE

header in the message must

have binary zeros as a chain

pointer value to denote the

end of the BPE headers

within the message.

These chain pointers are set

by the non-IMS Connector

for Java user exit.

STORAGE TYPE 8 bytes This field is managed by IMS

Connect and should not be

modified by the user exit.

TYPE ACCESS 4 bytes This field is managed by IMS

Connect and should not be

modified by the user exit.

SUBPOOL 1 byte This field is managed by IMS

Connect and should not be

modified by the user exit.

Reserved 43 bytes This field is managed by IMS

Connect and should not be

modified by the user exit.

How IMS Connect Communicates with an SSL Client

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) protect the privacy

and integrity of data that is transferred through a network. SSL rests on top of

TCP/IP to provide a mechanism for secure sockets. SSL uses a combination of

public and private keys and symmetric key encryption to authorize clients and

servers to one another. Once an SSL connection is established between a client and

server, data communications between client and server are transparent to the

encryption and integrity is added by the SSL protocol.

Because the SSL interface directly overlays the TCP/IP layer, it uses the same

message formats as the TCP/IP message formats sent to IMS Connect. See “How

IMS Connect Communicates with a TCP/IP Client” on page 39 for information

about the message formats.

How IMS Connect Communicates with User Message Exits

When the IMS Connect starts, it loads user message exits one at a time and calls

each user message exit INIT subroutine.

Communication with TCP/IP Clients

Chapter 3. IMS Connect User Message Exit Support 49

Example: USREXIT1, USREXIT2, and USREXIT3 are defined in the HWSCFG

parameter of the IMS Connect startup JCL as follows:

TCPIP=(HOSTNAME=...,EXIT=(USREXIT1,USREXIT2,USREXIT3),...)

IMS Connect loads USREXIT1 first and calls the USREXIT1 INIT subroutine. After

successfully loading USREXIT1, IMS Connect loads USREXIT2 and calls the

USREXIT2 INIT subroutine, and then repeats this process for USREXIT3. Any

unsuccessful loading or INIT failure prevents IMS Connect from connecting with

TCP/IP.

Important: If you define a user exit name in the IMS Connect configuration

member, but that user exit cannot be loaded during IMS Connect startup, the job

abends with Abend 806, RC=4.

To provide full user exit support in the IMS Connect environment, every user exit

routine must include the subroutines INIT, READ, XMIT, TERM, and EXER. IMS

Connect supports only Assembler language exits. In addition, any user-written

programs that are called by IMS Connect user message exits or user initialization

modules, must also be written in Assembler.

When a user exit takes control, it saves the contents of the registers and restores

them when returning to the caller. IMS Connect provides a 1 KB buffer in the

parmlist to be used for this purpose.

Register Contents on Subroutine Entry

Table 9 provides a brief description of the contents of the register on a subroutine

entry.

 Table 9. Register Contents on Subroutine Entry

Register Contents

1 Pointer to a parmlist that is defined in the HWSEXPRM macro.

14 Return address of IMS Connect.

15 Entry point address to the user exit routine. The entry point name and

load module name for a user exit routine must be the same as the

name used for the user exit routine in HWSCFG.

Register Contents on Subroutine Exit

Table 10 provides a brief description of the contents of the register on a subroutine

exit.

 Table 10. Register Contents on Subroutine Exit

Register Contents

1 Pointer to a parmlist that is defined in the HWSEXPRM macro.

INIT Subroutine

After a user exit has been successfully loaded, the INIT subroutine for that user

exit is called and a parmlist is passed to that user exit.

Contents of Parmlist Pointed to by Register 1 at INIT Subroutine

Entry

Table 11 on page 51 lists the contents of the parmlist that is passed to the user exit

at entry.

Communication with User Message Exits

50 IMS Connect Guide and Reference

|
|
|
|
|

Table 11. Contents of Parmlist Pointed to by Register 1 at INIT Subroutine Entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value INIT.

Specifies that the function to be

performed is: Initialize user

exit.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user

exit use. The user exit can use

this storage for a save area and

for local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface

block).

The user exit finishes all its initialization processes here. It returns two MSGID

identifiers for the messages that it is to handle, as well as the increase to the

output buffer size for its READ, XMIT, and EXER subroutines. The user exit

returns the increase in buffer size, but not the actual buffer size. The only reason to

return anything other than 0 is to allow the exit to add data to the data portion of

the message. The storage required for the BPE headers and OTMA headers is

computed by IMS Connect. Typically, one of the MSGIDs is used by ASCII clients

and the other by EBCDIC clients. IMS Connect computes the actual size of the

output buffer, and it allocates the buffer size before it passes control to the user

exit for READ, XMIT and EXER. The two identifiers can take any value, in

EBCDIC or ASCII, other than the three reserved MSGIDs (see ″Important,″ which

follows), provided that the values are both unique among user exits called by a

given IMS Connect. Blanks and binary 0 are significant. The IMS Connect saves

these identifiers to identify the owner of the incoming request messages. Any

conflict in the identifiers must be resolved before a TCP/IP connection can be

made.

Important: The following MSGIDs are reserved:

v *IRMRE1*-- Supports existing IMS TCP/IP messages that use the HWSIMSO1

user exit

v *IRMREQ*-- Supports existing IMS TCP/IP messages that use the HWSIMSO0

user exit

v *HWSCS1*-- Supports the IMSplex connection that uses the HWSCSLO1 user

message exit

v *HWSCSL*-- Supports the IMSplex connection that uses the HWSCSLO0 user

message exit

v *HWSJAV*-- Supports IMS Connector for Java clients

v *HWSOA1*-- Supports IMS SOAP Gateway

v *SAMPL1*-- Supports non-IMS Connector for Java clients that use the HWSSMPL1

user exit

v *SAMPLE*-- Supports non-IMS Connector for Java clients that use the HWSSMPL0

user exit

If duplicate MSGID identifiers exist, one of the user exits that uses the conflicting

identifier must either be dropped or be rewritten with a unique identifier. A system

administrator should coordinate the assignment of MSGIDs.

Communication with User Message Exits

Chapter 3. IMS Connect User Message Exit Support 51

|

Contents of Parmlist Pointed to by Register 1 at INIT Subroutine

Exit

Table 12 lists the contents of the parmlist that is pointed to by Register 1 and then

passed to the user exit during exit.

 Table 12. Contents of Parmlist Pointed to by Register 1 at INIT Subroutine Exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPINI_RETCODE 4 bytes Binary. Specifies the return code,

which can be one of the

following:

v 0=INIT function was

successful.

v 4=INIT function was not

successful.

EXPINI_RSNCODE 4 bytes Binary. Specifies the reason code.

EXPINI_STRING1 8 bytes Character string. Specifies the

first MSGID that clients can use

to identify this user exit. This

MSGID could be used for

EBCDIC clients.

EXPINI_STRING2 8 bytes Character string. Specifies the

second MSGID that clients can

use to identify this user exit. This

MSGID could be used for ASCII

clients.

EXPINI_BUFINC 4 bytes Binary. Specifies the increase size

to the output buffer needed to

allow the exit to denote that data

will be moved from the exit

input buffer to the output buffer

to add data to the message if

required.

Field EXPINI_BUFINC is an

increased size for input and

output messages above what is

needed for the BPE and OTMA

headers. If, for example, you

want to have the exit add data to

the message either on input or

output, then there will be

increase in buffer size.

If the INIT subroutine fails to complete the initialization function successfully, the

IMS Connect does not connect with TCP/IP. A system programmer can start the

connection after the problem has been fixed by issuing the OPENPORT command.

When all user exits have been loaded and initialized, the IMS Connect is ready to

receive messages from TCP/IP application programs. The IMS Connect uses the

TCP/IP Socket API to receive stream data across the net. The completion of a

message is determined by its MSGLength value returned by TCP/IP to IMS Connect.

The IMS Connect receives data up to the value specified in MSGLength and uses

MSGID to determine which user exit receives control for processing the request

message.

Communication with User Message Exits

52 IMS Connect Guide and Reference

|||
|
|
|
|

|||
|
|
|
|

READ Subroutine

After a complete request message that originated at a TCP/IP client has been

received, control is passed to the READ subroutine in the user exit whose MSGID

matches the MSGID of that request message and a parmlist is passed to that user

exit.

Contents of Parmlist Pointed to by Register 1 at READ

Subroutine Entry

Table 13 lists the contents of the parmlists which are pointed to by Register 1

during the READ subroutine entry.

 Table 13. Contents of Parmlist Pointed to by Register 1 at READ Subroutine Entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value READ.

Specifies that the function to be

performed is: Read client data

and convert it to OTMA format.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user

exit use. The user exit can use

this storage for a save area and

local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface

block).

EXPREA_INBUF 4 bytes Address of the input buffer.

EXPREA_IBUFSIZE 4 bytes Binary. Specifies the size of the

input buffer.

EXPREA_OUTBUF 4 bytes Address of the output buffer.

EXPREA_OBUFSIZE 4 bytes Binary. Specifies the size of the

output buffer.

EXPREA_FLAG1 1 byte Data string flag:

v X'80' - Input data contains a

MSGID matching

EXPINI_STRING1.

v X'40' - Input data contains a

MSGID matching

EXPINI_STRING2.

EXPREA_FLAG2 1 byte Data flag:

v X'01' - Data moved by exit

from INBUF to OUTBUF.

v X'02' - If this EXPREA_IPV6 bit

is turned on, IPV6 is enabled.

Map EXPREA_SOCKET6 to

AF-INET6 socket address

structure.

Reserved 2 bytes Reserved space.

EXPREA_RACFID 8 bytes Character string. Specifies the

default user ID for RACF.

The following 28 bytes have two definitions: one definition is for a 4 byte IPV4 address

(EXPREA_NAMEID) and another definition is for a 16 byte IPV6 address

(EXPREA_SOCKET6).

4 byte IPV4 address:

Communication with User Message Exits

Chapter 3. IMS Connect User Message Exit Support 53

Table 13. Contents of Parmlist Pointed to by Register 1 at READ Subroutine

Entry (continued)

Field Length Meaning

EXPREA_NAMEID 0 bytes Pointer referenced to the next 16

bytes.

EXPREA_FAMILY 2 bytes Binary. Specifies the client family

type.

EXPREA_PORT 2 bytes Binary. Specifies the client port

number.

EXPREA_ADDRESS 4 bytes Client’s IP address.

EXPREA_RESV0 4 bytes Reserved space.

EXPREA_RESERVE 4 bytes Reserved space.

12 bytes Reserved.

16 byte IPV6 address:

EXPREA_SOCKET6 0 bytes Map to the AF_INET6 socket

address structure (if the

EXPREA_IPV6 bit of

EXPREA_FLAG2 is turned on).

EXPREA_6LEN 1 byte Address of socket length.

EXPREA_6FAMILY 1 byte Address of family.

EXPREA_6PORT 2 bytes Port number used by the

application.

EXPREA_6FLOW 4 bytes Flow information.

EXPREA_6ADDR 16 bytes INET address (NETID).

EXPREA_6SCOPE 4 bytes Scope ID.

EXPREA_IBUFSIZE and EXPREA_OBUFSIZE are the sizes of the input buffer and output

buffer, respectively. These sizes are not related to the actual length of the input

data and output data. The input buffer contains an exact copy of the data that was

received from the client. The user exit might need to perform an ASCII-to-EBCDIC

conversion on the data so that the data can be properly interpreted by the IMS

application. The user exit can use EXPREA_FLAG1 to determine where the data

originated and whether additional processing is required by the exit.

IMS Connect also supplies the default RACF user ID and the client’s TCP/IP

connection information to the user exit. At this point, the user exit might edit or

filter its client’s input data, then translate that data to OTMA message segments

and place them in the output buffer. The user exit also must specify the length of

the output data in EXPREA_DATALEN.

Contents of Parmlist Pointed to by Register 1 at READ

Subroutine Exit

Table 14 lists the contents of the parm list that are pointed to by Register 1 during

the subroutine exit.

 Table 14. Contents of Parmlist Pointed to by Register 1 at READ Subroutine Exit

Field Length Meaning

Reserved 68 bytes Reserved space.

Communication with User Message Exits

54 IMS Connect Guide and Reference

|||

|

Table 14. Contents of Parmlist Pointed to by Register 1 at READ Subroutine

Exit (continued)

Field Length Meaning

EXPREA_RETCODE 4 bytes Binary. Specifies the return code,

which can be one of the

following values:

v 0=READ function was

successful. Process the data.

v 4=READ function was not

successful. Send the data in

EXPREA_OUTBUF back to client

and disconnect the socket.

v 8=READ function was not

successful. Just clean up.

EXPREA_RSNCODE 4 bytes Binary. Specifies the reason code.

EXPREA_DATALEN 4 bytes Binary. Specifies the size of data

in the EXPREA_OUTBUF to be

returned to IMS Connect. This

field is only meaningful when

EXPREA_RETCODE = 0 or 4.

EXPREA_UFLAG1 1 byte User flag:

v X'80' - Client requests IMS

MOD name be returned

Reserved 3 bytes Reserved space.

EXPREA_CLID 8 bytes Character string. It specifies the

client ID name passed by the

client or generated by the exit for

non-IMS Connector for Java

clients only.

EXPREA_SVT 4 bytes Address of SVT.

EXPREA_LSTNPORT 2 bytes Binary. Specifies the listening

port number.

The output buffer contains data when the return code is 0 or 4. When the return

code is 4, the data in the output buffer is sent back to the user exit’s client, and

then the connection is closed and cleaned up. When the return code is 0, the IMS

Connect prepares to present the data to a datastore. EXPREA_UFLAG1 is also saved by

the IMS Connect. This flag is set by the user exit during READ subroutine

processing and is used for recording user selected characteristics of the request

message. This flag is passed back to the user exit in the input parmlist pointed to

by Register 1 on the next subroutine call, which is either an XMIT or an EXER

subroutine call. You define the value of EXPREA_UFLAG1 in the user exit code. IMS

Connect uses this value to provide a communication vehicle between the READ

and XMIT or EXER subroutines on a per request/response message basis. The

XMIT and EXER subroutines can thus format the message in a better manner.

If IMS Connect detects an error in the output data that would prevent it from

properly presenting the data to the datastore (for example, the output data is not

formatted properly to conform to the IMS OTMA protocol), the EXER subroutine is

called where the error can be dealt with appropriately. IMS Connect then waits

until it receives the response message from IMS OTMA. After receiving a response,

Communication with User Message Exits

Chapter 3. IMS Connect User Message Exit Support 55

it calls the XMIT subroutine of the appropriate user exit (based on the MSGID in

the response) and passes it an exact copy of the response data that it received from

IMS OTMA.

XMIT Subroutine

After a complete response message has been received from the datastore, control is

passed to the XMIT subroutine in the user exit whose MSGID matches the MSGID

of the response message (which in turn matches the MSGID of the original request

message) and a parmlist is passed to that user exit.

Contents of Parmlist Pointed to by Register 1 at XMIT Subroutine

Entry

Table 15 lists the contents of the parmlist that are pointed to by Register 1 during

the XMIT subroutine entry and passed to the user exit.

 Table 15. Contents of Parmlist Pointed to by Register 1 at XMIT Subroutine Entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value XMIT.

Specifies that the function to be

performed is: Read OTMA data

and convert it to client

format.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user

exit use. The user exit can use

this storage for a save area and

local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface

block).

EXPXMT_INBUF 4 bytes Address of the input buffer.

EXPXMT_IBUFSIZE 4 bytes Binary. Specifies the size of the

input buffer.

EXPXMT_OUTBUF 4 bytes Address of the output buffer.

EXPXMT_OBUFSIZE 4 bytes Binary. Specifies the size of the

output buffer.

EXPXMT_FLAG1 1 byte Data string flag:

v X'80' - Input data contains a

MSGID matching

EXPINI_STRING1.

v X'40' - Input data contains a

MSGID matching

EXPINI_STRING2.

EXPXMT_UFLAG1 1 byte User flag. X’xx’ - User-defined

value. The value was set in

READ subroutine.

Reserved 2 bytes Reserved space.

EXPXMT_IBUFSIZE and EXPXMT_OBUFSIZE are the sizes of the input buffer and output

buffer, respectively. These sizes are not related to the actual length of the input

data and output data. The input buffer contains an exact copy of the OTMA

message segments that were received from the datastore. The user exit might need

to perform an EBCDIC-to-ASCII conversion on the data so that the data can be

properly interpreted by the client application. The user exit translates OTMA

Communication with User Message Exits

56 IMS Connect Guide and Reference

message segments to its client’s data format, places the data in the output buffer,

and specifies the length of the output data in EXPXMT_DATALEN. The user exit might

also edit or filter the output data at this point.

Contents of Parmlist Pointed to by Register 1 at XMIT Subroutine

Exit

Table 16 lists the contents of the parmlist that are pointed to by Register 1 during

the XMIT subroutine exit.

 Table 16. Contents of Parmlist Pointed to by Register 1 at XMIT Subroutine Exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPXMT_RETCODE 4 bytes Binary. Specifies the return code,

which can be one of the

following values:

v 0=XMIT function was

successful. Process the data.

v 8=XMIT function was not

successful. Just clean up.

EXPXMP_RSNCODE 4 bytes Binary. Specifies the reason code.

EXPXMT_DATALEN 4 bytes Binary. Specifies the size of data

in the EXPXMT_OUTBUF to be

returned to IMS Connect. This

field is only meaningful when

EXPXMT_RETCODE = 0.

When the return code is 0, the data in the output buffer is sent back to the

originator of the client request message. If the return code is not 0, the connection

is dropped. If the user exit sets a non-zero return code value, the connection closes

without sending a response back to the originator of the client request message.

TERM Subroutine

When IMS Connect is shutting down, control is passed, in turn, to the TERM

subroutine in each user exit that is currently active, and a parmlist is passed to that

user exit.

Contents of Parmlist Pointed to by Register 1 at TERM

Subroutine Entry

Table 17 lists the contents of the parmlist that are pointed to by Register 1 during

TERM Subroutine entry and passed to the user exit.

 Table 17. Contents of Parmlist Pointed to by Register 1 at TERM Subroutine Entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value TERM.

Specifies that the function to be

performed is: Clean up in

preparation for IMS Connect

shutdown.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user

exit use. The user exit can use

this storage for a save area and

local variables.

Communication with User Message Exits

Chapter 3. IMS Connect User Message Exit Support 57

Table 17. Contents of Parmlist Pointed to by Register 1 at TERM Subroutine

Entry (continued)

Field Length Meaning

EXPRM_XIB 4 bytes Address of XIB (exit interface

block).

The user exit finishes all its termination processes here.

Contents of Parmlist Pointed to by Register 1 at TERM

Subroutine Exit

Table 18 lists the contents of the parmlist that are pointed to by Register 1 during

the TERM subroutine exit.

 Table 18. Contents of Parmlist Pointed to by Register 1 at TERM Subroutine Exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPTRM_RETCODE 4 bytes Binary. Specifies the return code,

which can be one of the

following values:

v 0=TERM function was

successful.

v 4=TERM function was not

successful.

EXPTRM_RSNCODE 4 bytes Binary. Specifies the reason code.

The reason codes are set by the

exits (HWSIMSO0, HWSIMSO1,

HWSSMPL0, HWSSMPL1, and

HWSJAVA0).

IMS Connect shutdown proceeds independently of the return code value. The

return code merely indicates the completeness of the user exit cleanup.

EXER Subroutine

When IMS Connect detects an error in the output buffer after execution of the

previous READ subroutine completes, control is passed to the EXER subroutine in

the same user exit where the READ subroutine executed and a parmlist is passed

to that user exit.

Contents of Parmlist Pointed to by Register 1 at EXER

Subroutine Entry

Table 19 lists the contents of the parmlist that are pointed to by Register 1 during

EXER subroutine entry and passed to the user exit.

 Table 19. Contents of Parmlist Pointed to by Register 1 at EXER Subroutine Entry

Field Length Meaning

EXPRM_FUNCTION 4 bytes Character string of value EXER. Specifies that the

function to be performed is: Process error found in

output buffer after previous READ subroutine

processing completed.

EXPRM_TOKEN 4 bytes Address of a 1 KB buffer for user exit use. The user exit

can use this storage for a save area and local variables.

EXPRM_XIB 4 bytes Address of XIB (exit interface block).

Communication with User Message Exits

58 IMS Connect Guide and Reference

Table 19. Contents of Parmlist Pointed to by Register 1 at EXER Subroutine

Entry (continued)

Field Length Meaning

EXPXER_OUTBUF 4 bytes Address of the output buffer.

EXPXER_OBUFSIZE 4 bytes Binary. Specifies the size of the output buffer.

EXPXER_FLAG1 1 byte Data string flag, which can be one of the following

values:

v X'80' - Input data contains a MSGID matching

EXPINI_STRING1.

v X'40' - Input data contains a MSGID matching

EXPINI_STRING2.

EXPXER_UFLAG1 1 byte User flag. X'xx' - User-defined value. The value was set

in READ subroutine.

Reserved 2 bytes Reserved space.

EXPXER_CODE 4 bytes Binary. Specifies the failure code.

v 4=Error in the output buffer from the previous READ

function.

EXPXER_REASON 4 bytes Binary. Specifies the failure reason, which can be one of

the following:

v 20=Segment length error

v 24=Missing first in chain flag

v 28=Missing last in chain flag

v 32=Sequence number error

The user exit could have experienced difficulties in forming OTMA message

segment format and should notify its client of this situation (for example, through

an error message). The user exit can use EXPXER_FLAG1 to determine where the

request message from the client originated and whether to compose an ASCII or

EBCDIC data stream for sending back to the originating client.

Contents of Parmlist Pointed to by Register 1 at EXER

Subroutine Exit

Table 20 lists the contents of the parmlist that are pointed to by Register 1 during

the EXER subroutine exit.

 Table 20. Contents of Parmlist Pointed to by Register 1 at EXER Subroutine Exit

Field Length Meaning

Reserved 68 bytes Reserved space.

EXPXER_RETCODE 4 bytes Binary. Specifies the return code,

which can be one of the

following values:

v 4=Send the data in

EXPXER_OUTBUF back to client.

v 8=Just clean up.

EXPXER_RSNCODE 4 bytes Binary. Specifies the reason code.

EXPXER_DATALEN 4 bytes Binary. Specifies the size of data

in the EXPXER_OUTBUF to be

returned to clients. This field is

only meaningful when

EXPER_RETCODE=4.

Communication with User Message Exits

Chapter 3. IMS Connect User Message Exit Support 59

When the return code is 4, IMS Connect sends the data in the output buffer back

to the client. If the user exit sets the return code value to 8, the connection closes

without a response.

User Exit Message Description and Structures

IMS Connect allows up to 254 user exits to be defined in the configuration file (see

the example 16). There are two input message structures supported by IMS

Connect and two message structures supported on return from a user exit.

Input Messages from Client

Table 21 shows the structure for input messages received from the client by IMS

Connect. The table provides information about the input message structure type, if

the OTMA header is present or not, if the exit data is translated by the client code,

the exit type flag, and the supporting message type.

 Table 21. Input Message Structure

Input

message

structure

type

OTMA

header

present

Exit data

translated by

client code

Exit type flag

(IRMHDR_FLG5)

Supporting message type

1 Y Y 11000000 HWSJAVA0

1 Y N 10000000 HWSSMPL0 and HWSSMPL1

modified not to build OTMA

headers when the client/server

builds OTMA headers

2 N Y 01000000 HWSSMPL0 and HWSSMPL1

modified not to translate data

2 N N 00000000 HWSIMSO0

HWSIMSO1

HWSSMPL0

HWSSMPL1

Table 22 shows the structure for input messages returned by the exit based on the

input structure received by the exit. The table provides information about the input

message structure type, the exit output message structure type, the exit type flag,

and the supporting message type.

 Table 22. Input Message Structure Returned by the Exit

Input message

structure type

Exit output

message

structure type

Exit type flag

(IRMHDR_FLG5)

Supporting message type

1 1 11000000 HWSJAVA0

1 1 10000000 HWSSMPL0 and HWSSMPL1

modified not to build OTMA

headers when the client/server

builds OTMA headers

2 3 01000000 HWSSMPL0 and HWSSMPL1

modified not to translate data

2 3 00000000 HWSIMSO0

HWSIMSO1

HWSSMPL0

HWSSMPL1

Communication with User Message Exits

60 IMS Connect Guide and Reference

Output Message to Client

The output message from IMS is passed to the user exit that was called from the

client. The user exit normally removes the OTMA headers for output if the exit

added the OTMA headers for input. The user exit normally translates the data

from EBCDIC to ASCII if it did the translation for input. And the reverse is true if

these things were not done for input.

The OTMA header can consist of up to four sections and application data. If the

exit is to remove the OTMA header (not present on input), there must be a check

for each section. The four sections include:

v Control (always present in the OTMA structure)

v Header (might or might not exist in the OTMA structure)

v Security (might or might not exist in the OTMA structure)

v User (might or might not exist in the OTMA structure)

Output message from IMS to IMS Connect

All output messages received by IMS Connect from IMS consist of the

same structure, the OTMA header followed by LLZZ DATA. If the message

contains multiple segments, then the OTMA header and LLZZ DATA are

repeated for the number of segments in the message.

Output message from IMS returned by the exit back to IMS Connect

The message returned to IMS Connect from the exit consists of one of two

structures:

v Messages with OTMA structures imbedded in the message

v Message with no OTMA structures imbedded in the message

IMS Connect User Message Exit (HWSIMSO0 and HWSIMSO1)

This user message exit is shipped with IMS Connect and link-edited into the IMS

Connect RESLIB. You must use the IMS Connect user message exits instead of the

one shipped by TCP/IP. The installation must place the IMS Connect RESLIB that

contains the IMS Connect supplied exit (HWSIMSO0 and HWSIMSO1) in front of

the TCP/IP RESLIB. The HWSIMSO0 and HWSIMSO1 exits are shipped as object

code only (OCO). See the user exits HWSIMSO0 and HWSIMSO1. You can modify

it as described in “Modifying HWSIMSO0 and HWSIMSO1” on page 34.

Note: IMS Connect Version 9 is the final release of these two user message exits.

HWSIMSO0 and HWSIMSO1 will not be available in any future IMS Connect

release.

The installation can also change the name of this exit to ensure that this exit is

called rather than the one shipped with TCP/IP; the new exit name must be

specified in the EXIT=() parm of the IMS configuration file definition.

The COMMIT mode is set to “1,” and the SYNC level is set to “NONE.” These

values can be overridden by supplying the COMMIT mode and/or sync level in

the message prefix received from the client (see client message formats in

HDR_FLG2 and HDR_FLG3 shown in Table 5 on page 44).

The IMS Connect HWSIMSO0 and HWSIMSO1 exits translate ASCII to EBCDIC

and build the required message structure containing the OTMA headers for

messages received from the client. This exit performs the translation from EBCDIC

to ASCII and removes the OTMA headers for messages being transmitted to the

client.

User Message Exit Description and Structures

Chapter 3. IMS Connect User Message Exit Support 61

When you install the supplied sample user exits HWSSMPL0 and HWSSMPL1,

you can modify either exit and link-edit it out as HWSIMSO0 or HWSIMSO1 to

replace the copy supplied by IMS Connect, if you want to change any of the

options (for example, translation, OTMA build, commit mode, sync level) in

HWSIMSO0 or HWSIMSO1.

The user exits supplied by IMS Connect, HWSIMSO0 and HWSIMSO1, call the

user-provided security exit, IMSLSECX, and pass a parameter list in register 1 to

the security exit if it is defined in the exit. For the security parameter list structure,

see “Security Exit” on page 64. For information about the security actions that

HWSIMSO0 takes, see Appendix C, “HWSSMPL0, HWSSMPL1, HWSIMSO0, and

HWSIMSO1 Security Actions,” on page 189.

Input message structure passed to HWSIMSO0 and HWSIMSO1 exits

The message structure (type 2) is defined in “Non-IMS Connector for Java

Message Structure - Type 2” on page 66.

Input message structure returned from HWSIMSO0 and HWSIMSO1 exits

The message structure (type 3) is defined in “Non-IMS Connector for Java

Message Structure - Type 3” on page 68.

Output message passed to HWSIMSO0 and HWSIMSO1 exits

The message structure is defined in “Non-IMS Connector for Java Message

Structure” on page 71.

Output message returned from HWSIMSO0 and HWSIMSO1 exits

The message structure is defined in “Non-IMS Connector for Java Message

Structure” on page 71.

Sample User Message Exits (HWSSMPL0 and HWSSMPL1)

These sample user message exits perform the same functions as the IMS Connect

HWSIMSO0 and HWSIMSO1 exits, which cannot be modified. However, you can

modify the source code for the HWSSMPL0 or HWSSMPL1 exit, which are

supplied with the IMS Connect installation. If you do not need to modify the user

message exits HWSIMSO0 or HWSIMSO1, you can use either HWSSMPL0,

HWSSMPL1, HWSIMSO0, or HWSIMSO1.

The COMMIT mode is set to “1,” and the SYNC level is set to “NONE.”These

values can be overridden by supplying the COMMIT mode and/or sync level in

the message prefix received from the client (see client message formats in

IRM_FLG2 and IRM_FLG3 shown in Table 5 on page 44). Or, you can change the

exit to set the COMMIT mode and SYNC level to the desired values.

The IMS Connect HWSSMPL0 and HWSSMPL1 exits translate ASCII to EBCDIC

and build the required message structure containing the OTMA headers for

messages received from the client. This exit performs the translation from EBCDIC

to ASCII and removes the OTMA headers for messages being transmitted to the

client.

These user exits call the user-provided security exit if one is defined to this exit

and passes a parameter list in register 1. For the security parameter list structure,

see “Security Exit” on page 64. For information about the security actions that

HWSSMPL0 takes, see Appendix C, “HWSSMPL0, HWSSMPL1, HWSIMSO0, and

HWSIMSO1 Security Actions,” on page 189.

Input message structure passed to HWSSMPL0 or HWSSMPL1 exits

The message structure is defined in “Non-IMS Connector for Java Message

Structure - Type 2” on page 66.

User Message Exit Description and Structures

62 IMS Connect Guide and Reference

Input message structure returned from HWSSMPL0 or HWSSMPL1 exits

The message structure is defined in “Non-IMS Connector for Java Message

Structure - Type 3” on page 68.

Output message passed to HWSSMPL0 or HWSSMPL1 exits

The message structure is defined in “Non-IMS Connector for Java Message

Structure” on page 71.

Output message returned from HWSSMPL0 or HWSSMPL1 exits

The message structure is defined in “Non-IMS Connector for Java Message

Structure” on page 71.

IMS Connector for Java User Message Exit (HWSJAVA0)

This IMS Connector for Java client exit is shipped with IMS Connect, and

link-edited into the installation RESLIB. This exit does not perform a translation or

build to the OTMA headers. Both the translation and insertion or deletion of the

OTMA header is done by the IMS Connector for Java client server. HWSJAVA0 is

supplied as source code and can be modified.

The COMMIT mode is set to “1,” and the SYNC level is set to “NONE.”

This user exit calls the user-provided security exit if one is defined to this exit and

passes a parm list in register 1. For the security parm list structure, see “Security

Exit” on page 64.

Input message structure passed to HWSJAVA0 exit

The message structure is defined in “IMS Connector for Java Message

Structure - Type 1” on page 65.

Input message structure returned from HWSJAVA0 exit

The message structure is defined in “IMS Connector for Java Message

Structure - Type 1” on page 68.

Output message passed to HWSJAVA0 exit

The message structure is defined in “IMS Connector for Java message

structure” on page 70.

Output messaged returned from HWSJAVA0 exit

The message structure is defined in “IMS Connector for Java message

structure” on page 70.

IMS Connect IMSplex Message Exits (HWSCSLO0 and

HWSCSLO1)

HWSCSLO0 and HWSCSLO1 IMSplex message exits are shipped with IMS

Connect and link-edited into the IMS Connect RESLIB. You must use these exits

for the IMSplex support which supports the IMS Control Center. The source code

for HWSCLSO0 and HWSCSLO1 are not shipped and cannot be modified or

replaced.

The COMMIT mode is set to 1, and the SYNC level is set to NONE. These values

can be overridden by supplying either the COMMIT mode, the sync level, or the

COMMIT mode and sync level in the message prefix received from the IMS

Control Center client (see client message formats in IRM_F2 and IRM_F3 shown in

Table 5 on page 44).

The IMS Connect HWSCSLO0 and HWSCSLO1 exits translate ASCII to EBCDIC

and build the required message structure containing the required internal headers

for messages received from the client. HWSCSLO0 exit performs the translation

User Message Exit Description and Structures

Chapter 3. IMS Connect User Message Exit Support 63

from EBCDIC to ASCII and removes the internal headers for messages being

transmitted to the client. HWSCSLO1 exit does not perform any translation on the

output data, but it does remove the internal headers for messages being

transmitted to the client.

Input message structure passed to HWSCSLO0 exit

The input message structure is defined in “Non-IMS Connector for Java

Message Structure - Type 2” on page 66.

Output message returned from the HWSCSLO0 exit

The output message is defined in “Non-IMS Connector for Java Message

Structure” on page 71.

IMS SOAP Gateway Message Exit (HWSSOAP1)

The IMS SOAP Gateway message exit (HWSSOAP1) is shipped with IMS Connect

and link-edited into the IMS Connect RESLIB. You must use this exit for the IMS

SOAP Gateway support. The source code for HWSSOAP1 is not shipped and

cannot be modified or replaced.

The IMS Connect HWSSOAP1 builds the required message structure containing the

required internal headers for messages received from the client. HWSSOAP1 exit

removes the internal headers for messages being transmitted to the client.

Security Exit

You must provide a security exit (or use the TCP/IP exit, IMSLSECX) if any

security checking is to be done by the message exit. Due to the many options

available for security, and the fact that most installations have their own specific

security method, no sample security exit is provided. The call to RACF is

performed by IMS Connect if RACF parameters are provided in the OTMA header

when the message exit returns the message.

The name of the security exit called by HWSSMPL0, HWSSMPL1, HWSIMSO0,

HWSCSLO0, or HWSIMSO1 is IMSLSECX. You can change the name of the

security exit called by HWSSMPL0 or HWSSMPL1, and supply and define it in the

HWSSMPL0 and HWSSMPL1 message exit, by changing the EXTRN IMSLSECX

to a name of your choice. If you require a different security exit in HWSSMPL0 or

HWSSMPL1, you must provide the new security exit name. You must also provide

the name of the security exit called by HWSJAVA0 and define it in the HWSJAVA0

message exit.

Parameter list for user security exit:

Following is the list and order of parameters being passed to the security exit,

IMSLSECX. The order of the parameters is fixed for the exits supplied by IMS

Connect: HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1.

v Address of fullword client’s IP address

v Address of halfword client’s port

v Address of 8-char string IMS transaction

v Address of halfword data type (data type setting: 0=ASCII, 1=EBCDIC)

v Address of fullword length of user data

v Address of user-supplied data

v Address of fullword set by security exit

v Address of fullword set by security exit

v Address of RACF user ID

User Message Exit Description and Structures

64 IMS Connect Guide and Reference

|

|
|
|
|

|
|
|

If blanks are returned (in the field pointed to) from the security exit, then the

RACF fields in the OTMA security header are not set.

The address points to a field containing blanks.

v Address of RACF group ID

The address points to a field containing blanks.

Message Structures

The following section describes the message structures for IMS Connector for Java

and non-IMS Connector for Java messages.

Input Message From Client and Passed to Exit

Input messages from the client consist of IMS Connector for Java and non-IMS

Connector for Java message structures.

This section contains Product-Sensitive Programming Interface and Associated

Guidance Information.

IMS Connector for Java Message Structure - Type 1: Table 23 shows the input

message format supported by IMS Connect from an IMS Connector for Java client.

 Table 23. Supported Message Format from an IMS Connector for Java Client

Field Length Meaning

llll 4 bytes Length of entire message, including llll field.

The IRM fields follow.

IRM_LL 2 bytes Length of IMS Connector for Java interface header,

including LLZZ field.

IRM_ARCH 1 byte Architectural level.

v X'00' Base support.

v X'01' Required space for IRM_REROUT_NM

field.

IRM_F0 1 byte Reserved. Initialize to binary zeros.

IRM_ID 8 bytes Char value of *HWSJAV*.

Reserved 4 bytes Reserved (set to binary zeros).

IRM_F5 1 byte Binary value for input message type and resume

type processing.

IRM_TIMER 1 byte Receive after ACK/RESUME TPIPE wait time.

IRM_SOCT 1 byte Receive after ACK/RESUME TPIPE wait time.

IRM_ES 1 byte Unicode encoding schema.

IRM_CLIENTID 8 bytes Char value of a unique client ID.

OTMA HDRs 466 bytes See OTMA DSECT (HWSOMPFX) in GENLIB for

description.

LL 2 bytes Length of data segment.

zz 2 bytes Reserved (set to binary zeros).

DATA n bytes User data with the tran code first.

OTMA CTL HDR 20 bytes See OTMA DSECT (HWSOMPFX) in GENLIB for

description.

LL 2 bytes Length of 2nd data segment.

zz 2 bytes Reserved (set to binary zeros).

User Message Exit Description and Structures

Chapter 3. IMS Connect User Message Exit Support 65

||

|

|
|

|

Table 23. Supported Message Format from an IMS Connector for Java Client (continued)

Field Length Meaning

DATA n bytes User data 2nd data segment (no tran code).

...

OTMA CTL HDR 20 bytes See OTMA DSECT (HWSOMPFX) in GENLIB for

description.

LL 2 bytes Length of this and last data segment.

zz 2 bytes Reserved (set to binary zeros).

DATA n bytes User data with this data segment (no tran code).

Non-IMS Connector for Java Message Structure - Type 2: Table 24 shows the

input message format supported by IMS Connect from a non-IMS Connector for

Java client.

 Table 24. Supported Message Format for Non-IMS Connector for Java Clients

Field Length Meaning

llll 4 bytes Length of entire message, including llll field

The IRM fields follow.

IRM_LEN 2 bytes Length of TCP/IP interface header

IRM_ARCH 1 byte Architectural level.

v X'00' Base support.

v X'01' Required space for IRM_REROUT_NM

field.

IRM_F0 1 byte Reserved. Initialize to binary zeros.

IRM_ID 8 bytes Char value of *IRMREQ* (for HWSIMSO0) Char

value of *IRMRE1* (for HWSIMSO1) Char value of

SAMPLE (for HWSSMPL0) Char value of

SAMPL1 (for HWSSMPL1)

IRM_RES 4 bytes Reserved for future use.

IRM_F5 1 byte Binary value for input message type and resume

type processing

IRM_TIMER 1 byte Receive after ACK/RESUME TPIPE wait time

IRM_SOCT 1 byte Socket type

IRM_ES 1 byte Unicode encoding schema

IRM_CLIENTID 8 bytes Char value of a unique client ID

The following definition is for use with the HWSIMSO0 and HWSSMPL0 exits. The user

installation can provide its own exit, and structure the following items as required by the

user exit. The following items should be considered. This example lists only some of the

items you can use. You might want to include fields that are used only by the user exit or

other items that can be passed in the OTMA headers, such as the MID name.

IRM_F1 1 byte Binary MFS and Unicode flag

IRM_F2 1 byte Binary COMMIT MODE flag

IRM_F3 1 byte Binary SYNC LEVEL flag

IRM_F4 1 byte Char value conversation byte

IRM_TRNCOD 8 bytes Char value for user transaction code

IRM_IMSDESTID 8 bytes Char value for Datastore ID

User Message Exit Description and Structures

66 IMS Connect Guide and Reference

|

|

Table 24. Supported Message Format for Non-IMS Connector for Java Clients (continued)

Field Length Meaning

IRM_LTERM 8 bytes Char value for LTERM override name

IRM_RACF_USERID 8 bytes Char value for RACF user ID

IRM_RACF_GRNAME 8 bytes Char value for RACF group name

IRM_RACF_PW 8 bytes RACF PassTicket/password

IRM_APPL_NM 8 bytes Character string. It specifies the RACF APPL name,

that was defined to RACF on the PTKTDATA

definition. (This is not supported for HWSIMSO0

or HWSIMSO1.)

IRM_REROUT_NM 8 bytes Optional. Character string (A through Z, 0 to 9) or

special characters (@,#,$). It specifies the reroute

name of the client reroute request. Blanks are

recommended for the default value. If the client

reroute name is provided, then the following IRM

fields must be set:

v IRM_F3 to IRM_F3_REROUT

v IRM_ARCH to IRM_ARCH1

If IRM_REROUT_NM is specified, the following

fields must be present with valid values or blanks:

v IRM_RACF_USERID - Required only if a RACF

groupname is provided; otherwise, this field is

optional.

v IRM_RACF_GRNAME - Required only if a

RACF password is provided; otherwise, this

field is optional

v IRM_RACF_PW - Required only if a APPL name

is provided; otherwise, this field is optional

v IRM_APPL_NM - Required only if a REROUT

name is provided; otherwise, this field is

optional

The following is the data structure for all non-IMS Connector for Java clients. An IMS

command input can only contain a single LL ZZ DATA followed by EOM.

LL 2 bytes Length of data segment

zz 2 bytes Reserved (set to binary zeros)

DATA n bytes User data with the tran code first

LL 2 bytes Length of 2nd data segment

zz 2 bytes Reserved (set to binary zeros)

DATA n bytes User data 2nd data segment (no tran code)

...

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary zeros)

DATA n bytes User data segment (no tran code)

LL 2 bytes End of message (set to binary 0000 0000 0000 0100)

zz 2 bytes Reserved (set to binary zeros)

User Message Exit Description and Structures

Chapter 3. IMS Connect User Message Exit Support 67

|
|
|
|

||
|
|
|
|
|

|

|

|
|

|
|
|

|
|
|

|
|

|
|
|

Input Message Returned From Message Exit

Input messages from the message exit consist of IMS Connector for Java and

non-IMS Connector for Java message structures.

IMS Connector for Java Message Structure - Type 1: The IMS Connector for Java

exit output message format that is supported by IMS Connect is the same message

format of the input message. See “IMS Connector for Java Message Structure -

Type 1” on page 65 for the message format.

The total length of the message can be 10,000,000 bytes. The length of each

segment (from the BPE header to the next BPE header) within the message can be

a maximum of 32 KB, excluding the BPE and OTMA headers.

Non-IMS Connector for Java Message Structure - Type 3: Table 25 shows the

output message format supported by IMS Connect from the supplied HWSIMSO0

and HWSSMPL0 exits (non-IMS Connector for Java client exits). The table provides

information about the field, length, and meaning. Variable length OTMA headers

are supported, and therefore, the OTMA header length can be other than 466 bytes.

The following example contains 466 bytes as used by the supplied exits.

 Table 25. Supported Output Message Format for HWSIMSO0 and HWSSMPL0 Exits

Field Length Meaning

BPE HEADER 64 bytes See BPE header definition

that follows this table

OTMA HDRs 466 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of first data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data with the tran code

first

Repeat of ll,zz,DATA

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data (no tran code)

yy 2 bytes Binary value of zero

BPE HEADER 64 bytes See BPE header definition

that follows this table

OTMA CTL HDR 32 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data segment (no tran

code)

Repeat of LL,zz,DATA

LL 2 bytes Length of this data segment

User Message Exit Description and Structures

68 IMS Connect Guide and Reference

Table 25. Supported Output Message Format for HWSIMSO0 and HWSSMPL0

Exits (continued)

Field Length Meaning

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data (no tran code)

...

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data (no tran code)

yy 2 bytes Binary value of zero

BPE HEADER 64 bytes See BPE header definition

that follows this table

OTMA CTL HDR 32 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data (no tran)

...

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data (no tran code)

yy 2 bytes Binary value of zero

Restriction: The length of data from one BPE header to the next BPE header

cannot exceed 32K, excluding the BPE header and the OTMA header.

BPE header format:Table 26 describes length and meaning of the fields in the BPE

header format.

Restriction: Only the chain pointer field is modified by the message exit to chain

the BPE headers together with the last BPE chain pointer set to binary zeros. The

other fields in the BPE header MUST NOT BE MODIFIED BY THE EXIT.

Important: The following table contains Product-Sensitive Programming Interface

and Associated Guidance Information.

 Table 26. BPE Header Format

Field Length Meaning

llll 4 bytes Length of field of entire

buffer

CHAIN PTR 4 bytes Chain pointer to next BPE

header

STORAGE TYPE 8 bytes Storage type

User Message Exit Description and Structures

Chapter 3. IMS Connect User Message Exit Support 69

Table 26. BPE Header Format (continued)

Field Length Meaning

TYPE ACCESS 4 bytes Type access

SUBPOOL 1 byte Subpool

RESV 43 bytes Reserved

Output Message From IMS Connect to Client

Output messages from IMS Connect to the client consist of the IMS Connector for

Java and non-IMS Connector for Java message structures.

IMS Connector for Java message structure: Table 27 shows the message format

from IMS Connect to user message exit, HWSJAVA0, and the message format

returned to IMS Connect from the user message exit, HWSJAVA0. The messages

passed to HWSJAVA0 and returned by HWSJAVA0 are the same format. The table

provides information about the length and meaning of the fields in the output

message.

Important: The following table contains Product-Sensitive Programming Interface

and Associated Guidance Information.

 Table 27. Output Message Format from IMS Connect to the Client

Field Length Meaning

llll 4 bytes Total message length

Id 8 bytes *HWSJAV*

OTMA HDRs 466 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

OTMA CTL HDR 20 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

...

OTMA CTL HDR 20 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of this segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

OTMA CTL HDR 32 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

User Message Exit Description and Structures

70 IMS Connect Guide and Reference

Table 27. Output Message Format from IMS Connect to the Client (continued)

Field Length Meaning

LL 2 bytes Length of data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

...

LL 2 bytes Length of this data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

Non-IMS Connector for Java Message Structure: Table 28 shows the message

format from IMS Connect to the exit for the client.

 Table 28. Output Message Format from IMS Connect to the Exit

Field Length Meaning

OTMA HDRs Length of total OTMA

headers.

See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

OTMA CTL HDR 20 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of this segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

...

OTMA CTL HDR 20 bytes See OTMA DSECT

(HWSOMPFX) in GENLIB

for description

LL 2 bytes Length of this segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

Output Message From Message Exit

Output messages from the message exit consist of the non-IMS Connector for Java

message structures.

Non-IMS Connector for Java Message Structure: The non-IMS Connector for

Java message structure can consist of one or more TCP/IP message structures.

These TCP/IP message structures are described in this section.

User Message Exit Description and Structures

Chapter 3. IMS Connect User Message Exit Support 71

RMM - Request Mod Message

Returned as the first structure of an output message if the MFS mod name

is requested and the data output is present. (This does not apply to IMS

command output.)

 Table 29 shows the output message format of the Request Mod Message

built by the user message exits, HWSSMPL0, HWSSMPL1, HWSIMSO0,

and HWSIMSO1. The table includes the field name, field length, and field

meaning.

 Table 29. Request Mod Message Output Message Format

Field Length Meaning

LL 2 bytes Length of RMM message

zz 2 bytes Reserved (set to binary

zeros)

ID 8 bytes Char value of *REQMOD*

MOD 8 bytes Char value of the requested

MFS MOD name

CSM - Complete Status Message

Returned as the last structure of an output message if the input message is

processed successfully. (This does not apply to IMS command output.)

 Table 30 shows the output message format of the Complete Status Message.

The table includes the field name, field length, and field meaning.

 Table 30. Complete Status Message Output Message Format

Field Length Meaning

CSM_LEN 2 bytes Length of CSM message

CSM_FLG1 1 byte FLAG BYTE ONE X'80'

asynchronous message

queued in IMS. X'40'

conversational output

message. X'20' ACK/NAK

required.

Reserved 1 byte Reserved (set to binary zeros)

CSM_ID 8 bytes Char value of *CSMOKY*

RSM - Request Status Message

Returned as the only structure of an output message if IMS Connect or the

message exit determined an error occurred. (This is valid for IMS

command output.)

 Table 31 shows the output message format of the Request Status Message

for an error condition. The table includes the field name, field length, field

meaning.

 Table 31. Request Status Message Output Message Format

Field Length Meaning

RSM_LEN 2 bytes Length of RSM message

User Message Exit Description and Structures

72 IMS Connect Guide and Reference

Table 31. Request Status Message Output Message Format (continued)

Field Length Meaning

RSM_FLG1 1 byte FLAG BYTE ONE X'80'

asynchronous message

queued in IMS. X'40'

conversational output

message. X'20' ACK/NAK

required.

RSM_OTMARSN 1 byte REASON CODE FROM

OTMA

IMS Connect sets the OTMA

reason code associated with

the OTMA sense code of

X'1A' in the NAK message to

be sent back to the client

application for the

Send-Only with

Acknowledgement

transaction.

RSM_ID 8 bytes Char value of *REQSTS*

RSM_RETCOD 4 bytes Return code

RSM_RSNCOD 4 bytes Reason code

 The output message from the message exit that is sent to non-IMS Connector for

Java clients is in one of the following formats:

v MFS MOD name request, data, and CSM is being sent. (This does not apply to

IMS command output.) Table 32 shows one of the formats of output message

that is sent to non-IMS Connector for Java clients. The table includes the field

names, field lengths, and field meaning.

 Table 32. Output Message Format Containing RMM, DATA, and CSM

Field Length Meaning

RMM header (optional) 20 bytes Request Mod message,

contains mod name if

requested

LL 2 bytes Length of data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

LL 2 bytes Length of 2nd data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data 2nd data segment

...

LL 2 bytes Length of nth segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data nth data segment

CSM 12 bytes Complete status message

User Message Exit Description and Structures

Chapter 3. IMS Connect User Message Exit Support 73

v MFS MOD name is not requested and only data and CSM is being sent. (This

does not apply to IMS command output.) Table 33 shows the other format of

output message that is sent to non-IMS Connector for Java clients. The table

includes the field names, field lengths, and field meaning.

 Table 33. Output Message Format Containing Output Data and CSM Only

Field Length Meaning

LL 2 bytes Length of data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data

LL 2 bytes Length of 2nd data segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data 2nd data segment

...

LL 2 bytes Length of nth segment

zz 2 bytes Reserved (set to binary

zeros)

DATA n bytes User data nth data segment

CSM 12 bytes Complete status message

The output message sent to an IMS Control Center client is shown in Table 34.

IMS Command Output

Returned as the only data response structure of an output command

response.

 Table 34. Output Message Format Sent to the IMS Control Center

Field Length Meaning

LLLL 4 bytes Length of output

DATA n bytes IMS command output

Macros

IMS Connect supports six macros: HWSEXPRM, HWSOMPFX, HWSIMSCB,

HWSIMSEA, HWSXIB, and HWSXIBDS.

HWSEXPRM

This macro provides the mapping for the parameter list that is passed to

the user exit on each subroutine call. A copy of this macro is in ADFSSRC.

To see the structure, assemble the macro.

HWSOMPFX

This macro maps the OTMA message prefix format to the output buffer

that the user exit returns on each READ subroutine call and the input

buffer that is passed to the user exit on each XMIT subroutine call. A copy

of this macro is in ADFSSRC. To see the structure, assemble the macro.

User Message Exit Description and Structures

74 IMS Connect Guide and Reference

HWSIMSCB

This macro maps the IMS request messages and BPE header formats used

by HWSSMPL0. A copy of this macro is in ADFSSRC. To see the structure,

assemble the macro.

HWSIMSEA

This macro maps the storage area used by HWSSMPL0 and HWSSMPL1. A

copy of this macro is in ADFSSRC. To see the structure, assemble the

macro.

HWSXIB

This macro maps the exit interface block used by HWSUINIT. A copy of

this macro is in ADFSSRC. To see the structure, assemble the macro.

HWSXIBDS

This macro maps the entry in the exit interface block datastore list (used by

HWSUINIT). The list contains the datastore name, the datastore status, and

a user field. A copy of this macro is in ADFSSRC. To see the structure,

assemble the macro.

IMS Connect Macros

Chapter 3. IMS Connect User Message Exit Support 75

IMS Connect Macros

76 IMS Connect Guide and Reference

Chapter 4. IMS Connect DRU Exit for Asynchronous Output

Support

An OTMA DRU (destination resolution) exit is required to support asynchronous

output that is generated by an IMS application that does an insert (insert) to an

alternate PCB (program communication block). IMS Connect provides a sample

OTMA DRU exit named HWSYDRU0. You can either modify the HWSYDRU0 exit

to work with your installation, or provide your own DRU exit.

In this chapter:

v “How IMS Connect Communicates with the DRU Exit”

v “How to Use the HWSYDRU0 Exit”

Related Reading: For more information on the OTMA DRU exit, see the IMS

Customization Guide.

How IMS Connect Communicates with the DRU Exit

OTMA allows transaction pipe names (TPIPEs) to be the same as an IMS LTERM

name. In IMS Connect, the LTERM name is analogous to the unique CLIENTID

name. To clarify whether a destination is for IMS Connect (via OTMA), IMS

provides OTMA exit routines that can specify where IMS should look to resolve

the destination names. In this case, the IMS needs to look at the IMS Connect

CLIENTIDs. The DRU exit cannot change the actual destination name. Determining

the destination for an OTMA (IMS Connect client) message requires two phases.

1. The prerouting exit routine (DFSYPRX0) is called to determine the initial

destination for the output.

The exit routine can determine whether the message should be directed to

OTMA (IMS Connect clients) or to IMS TM for processing. The exit routine

cannot determine the final destination.

2. The DRU exit routine (for example, the IMS Connect supplied exit

HWSYDRU0) is called to determine the final destination for the output.

Each OTMA client can specify a separate DRU exit routine. In other words,

each OTMA client can specify a single DRU exit for each copy of IMS Connect

that is connected to a given datastore (IMS). This means that one IMS Connect

can have the same or a different DRU exit for each of the datastore definitions

in the IMS Connect configuration file.

How to Use the HWSYDRU0 Exit

HWSYDRU0, the IMS Connect supplied OTMA DRU exit, provides only a sample

of what the DRU exit can do. You can use this exit only under one of the following

conditions:

v The IMS Connect CLIENTIDs are named CLIENT01 through CLIENT09 and

they all belong to the same member name.

v The non-IMS Connect CLIENTIDs are as follows:

– TPIPE001 through TPIPE099 all belong to member MEMBER0

– TPIPE100 through TPIPE199 all belong to member MEMBER1

– TPIPE200 through TPIPE299 all belong to member MEMBER2

© Copyright IBM Corp. 2000, 2007 77

– TPIPE300 through TPIPE399 all belong to member MEMBER3

– TPIPE400 through TPIPE499 all belong to member MEMBER4

– TPIPE500 through TPIPE599 all belong to member MEMBER5

– TPIPE600 through TPIPE699 all belong to member MEMBER6

– TPIPE700 through TPIPE799 all belong to member MEMBER7

– TPIPE800 through TPIPE899 all belong to member MEMBER8

– TPIPE900 through TPIPE999 all belong to member MEMBER9

The HWSYDRU0 exit is only an example, and when you use it, the following

sequence of events will occur:

1. The prerouting exit (DFSYPRX0) sets up addressability to the parameters that

are passed to the HWSYDRU0 exit.

2. The output member name in the output parameter list is set to blanks.

3. HWSYDRU0 determines the action to take based on whether the name in the

input destination parameter (that is, the destination where the message is to be

sent) is an IMS LTERM or an IMS Connect destination. After HWSYDRU0

makes this determination, it takes a course of action, and sets the contents of

register 15 on exit.

4. If an IMS application was initiated by a non-IMS Connect client, then the

YDRU exit must build the OTMA user data.

5. If the YDRU exit places the character string, ICONNECT, into the OTMA user

data header field, OMUSR_PORTID, (whether built by YDRU or passed to

YDRU) then IMS Connect will determine the correct PORTID to be used for the

selected output client ID.

Table 35 describes the register settings and the action taken for the specific return

code.

 Table 35. Register Settings and HWSYDRU Actions

Register Settings HWSYDRU Actions

Register 15 = X'00' v The input destination name is an IMS Connect client name

and the Member name for the destination is the same as the

Member name for the origin.

v No changes made to the output parameters.

Register 15 = X'04' v LTERM exists in IMS (LEGACY), is not an IMS Connect

client.

v No changes made to the output parameters.

Register 15 = X'08' v The input destination name is an IMS Connect client name,

and the Member name for the destination is a different

name from the Member name for the origin.

v The output member name in the output parameters is set to

the new Member name.

Register 15 = X'0C' The input destination name is not an LTERM for IMS, and

IMS Connect does not know the client name.

How to Use the HWSYDRU0 Exit

78 IMS Connect Guide and Reference

Chapter 5. IMS Connect User Initialization Exit Support

IMS Connect provides a user initialization exit routine, HWSUINIT. This routine

enables you to perform customized initialization tasks during IMS Connect startup

and/or customized termination tasks during IMS Connect shutdown.

For example, you can modify the HWSUINIT routine to display a specific message

when IMS Connect starts up or shuts down.

The HWSUINIT routine contains two user control blocks that enable further

customization: XIB and XIBDS. The XIB control block can be used to store any data

that you want. The XIBDS control block keeps track of the status of the IMS

Connect datastores. All of the IMS Connect user message exits can access both the

XIB and XIBDS user control blocks.

For example, you can modify HWSUINIT to load a specific table when IMS

Connect starts up; then, store the table address into the XIB control block area.

Once the IMS Connect user message exits get control, they access that table and

perform their customized processing. When IMS Connect shuts down, you can

modify HWSUINIT to unload the updated table.

Important: The HWSUINIT user initialization exit routine that comes with IMS

Connect does not do any processing. Modify HWSUINIT only if you want to use

it. If you provide your own user initialization exit, it must be written in Assembler.

In addition, any user-written programs that are called by the IMS Connect

initialization module (IMS Connect provided or user written) must also be written

in Assembler. IMS Connect supports only Assembler language exits and

initialization modules.

Related Reading: “Macros” on page 74 describes the XIB and XIBDS definitions.

In this chapter:

v “How IMS Connect Communicates with HWSUINIT”

v “Register Contents on HWSUINIT Entry” on page 80

v “Register Contents on HWSUINIT Exit” on page 80

How IMS Connect Communicates with HWSUINIT

HWSUINIT contains two subroutines: INIT and TERM. When IMS Connect starts,

HWSUINIT loads and gives control to the INIT subroutine. When IMS Connect

shuts down, HWSUINIT gives control to the TERM subroutine.

HWSUINIT contains two of its own user control blocks: XIB and XIBDS. The

HWSXIB and HWSXIBDS DSECTs map the XIB and XIBDS user control blocks.

The message exit routines in the INIT, READ, XMIT, TERM, and EXER subroutines

can also use the XIB and XIBDS user control blocks. The XIB user control block

contains a fixed length header section and a variable length user area.

Restriction: You cannot modify the fixed header section. You can only modify the

user area.

© Copyright IBM Corp. 2000, 2007 79

|
|
|
|
|
|
|

You specify the size of the XIB control block user area, in full words, with the

xibarea parameter (in the HWS statement of the IMS Connect configuration file).

The default value is 20; the maximum value is 500. If you do not specify a value

for the xibarea parameter, or you specify a value outside of the 20 to 500 range,

IMS Connect uses the default value of 20.

The XIBDS user control block represents an entry in a list of datastores that are

defined in the configuration file. The second word in the fixed header area of the

XIB user control block points to the datastore list. The XIBDS user control block is

16 bytes long. Each datastore list entry contains the datastore name, the datastore

status (active or inactive), a flag byte, and a 4 byte field that you can use to store

any kind of data. The last entry is indicated by a value of X'80' (hexadecimal) in

the flag byte. The number of entries in the list is equal to the number of datastores

defined in the IMS Connect configuration file.

Because the XIBDS user control block keeps track of all IMS Connect datastore

statuses, you can enable any user message exit to take action based on the status of

one or more of the IMS Connect datastores. For example, before a user message

exit passes a client message to an IMS Connect datastore for processing, you could

have the user message exit query the XIBDS control block area for the target

datastore’s status. If the target datastore is not active, you could enable the user

message exit to switch to an active datastore by modifying the datastore name in

the message header. Refer to “Macros” on page 74 for the XIBDS definition.

When the HWSUINIT routine takes control, it saves the contents of the registers

and restores them when returning to the caller. IMS Connect provides a 1 KB

buffer in the parmlist to be used for this purpose.

Register Contents on HWSUINIT Entry

Table 36 lists the contents of each register on the HWSUINIT entry.

 Table 36. Register Contents on HWSUINIT Entry

Register Contents

1 Pointer to a parmlist:

v +0 — XIB address

v +4 — Function to perform (INIT or TERM)

v +8 — 1 KB buffer for exit to use

14 Return address of IMS Connect.

15 Entry point address to HWSUINIT.

Register Contents on HWSUINIT Exit

Table 37 lists the contents of each register on the HWSUINIT exit.

 Table 37. Register Contents on HWSUINIT Exit

Register Contents

0–14 Restored.

15 0 — completed successfully. 1 to 7 — warning, but IMS Connect

initialization continues. 8 or higher — force IMS Connect termination.

IMS Connect Communication with HWSUINIT

80 IMS Connect Guide and Reference

Chapter 6. IMS Connect IMSplex Support

This chapter describes how IMS Connect sends and receives OM commands and

response string messages to and from the IMS Control Center client, which is

delivered as part of the DB2 Control Center, to an IMS Operations Manager within

an IMSplex using IMS SCI. It also provides detailed information about the

environment requirements and how to set up IMS Connect to support OM.

In this chapter:

v “IMSplex Support” on page 81

v “IMSplex Support Environment”

v “Installing IMSplex Support” on page 82

IMSplex Support

The IMS Connect support, called IMSplex, allows the IMS Control Center on the

DB2 Control Center client to access OM. The IMSplex support accesses OM

through the IMS Structure Call Interface (SCI). The IMSplex statement in the IMS

Connect configuration file (HWSCFGxx) defines IMS Connect for IMSplex support.

If the IMSplex statement is omitted, then IMSplex support is not available.

IMSplex support, sends IMS command string messages directly for a client (for

example, the IMS Control Center supplied TCP/IP client) to a selected OM within

an IMSplex. One or more IMSplex can be defined to IMS Connect to receive DB2

Control Center client command messages. SCI is used to communicate between

IMS Connect and the IMSplex. To gain access to the selected OM, you can define

the same IMS system as both a datastore and as an IMSplex.

The same security method (authentication of the userid, groupid, and password)

used for accessing datastores also applies to IMSplex support. An IMS Connect

command message exit performs similar functions as an IMS Connect user

message exit.

There is a separate and specific message exit (HWSCSLO0) that is defined for

IMSplex support. This exit is similar to the user message exits provided by IMS

Connect for client access to the datastore. The IMSplex message exit is designed to

be used only by the IMS Control Center client and cannot be used by any client

that sends messages to a datastore. The difference between the two message exits

is that the IMS Connect command message exit processes only the IMS Control

Center command string messages.

IMSplex Support Environment

IMS Connect requires that the following environments be running to communicate

with OM:

v IMS 8.1 or later (in the same MVS image or a different MVS image on the same

sysplex)

v IMS 8.1 Operations Manager or later (in the same MVS image or a different

MVS image on the same sysplex)

v IMS 8.1 Structure Call Interface (SCI) (in the same MVS image or a different

MVS image on the same sysplex)

© Copyright IBM Corp. 2000, 2007 81

See IMS Version 9: Common Service Layer Guide and Reference for bringing up the

IMS, SCI, and OM address spaces.

IMS Connect can be brought up before or after IMS, SCI, OM, and RM. During

IMS Connect initialization, connection to SCI is made. IMS Connect attempts to

connect to SCI for 30 minutes. If SCI connection is not made, then an OPENIP

command will need to be issued to connect to the SCI after the SCI has been

initialized. If the SCI terminates normally or abnormally, IMS Connect will

automatically reconnect to the SCI when the SCI is restarted.

Installing IMSplex Support

IMSplex support requires that the installation process be performed in the

following order:

IMS Connection Configuration File

1. Add the IMSplex statement.

2. Add the HWSCSLO0 and HWSCSLO1 exits to the TCPIP statement

EXIT= parameter.

IMS Connect BPE Configuration File

1. Add OMDR and HWSO statements, if the IMS Connect trace entries

are listed separately.

IMS Control Center

1. Identify the IMS Connect HWS ID= value.

2. Identify the IMS Connect IMSPLEX tmember= value.

IMS Connect Commands Introduced by IMSplex Support

v STOPIP

v OPENIP

v VIEWIP

IMS Connect IMSplex Support Requirements

v IMS Operations Manager (OM)

OM requires IMS to be running to provide the OM command capability.

IMS Connect IMSplex support does not require IMS to be running;

however, none of the commands will be processed.

Recommendation by IMS: Follow, in order, the start procedures:

1. Start SCI

2. Start OM

3. Start RM

4. Start IMS
You can start IMS Connect before, during, or after the steps listed above.

IMS Connect will attempt to connect to SCI for 30 minutes, and if SCI is

not brought up or the connection attempt fails, you must issue an OPENIP

imsplex_name command.

v IMS Structure Call Interface (SCI)

v TCP/IP

v IMS 8.1 must be installed to use the IMS Connect IMSplex support

v IMS 8.1 (or higher) RESLIB must be added to the STEPLIB

The IMS RESLIB is required to be able to access the SCI for IMS Connect

IMSplex support.

82 IMS Connect Guide and Reference

|
|

Chapter 7. IMS Connect Two-Phase Commit Support

IMS Connect supports two phase-commit which allows IMS transactions to

participate in two-phase-commit transactions that are coordinated by RRS or an

external coordinator (for example, IBM WebSphere Application Server). The

external coordinator must use IMS Connector for Java as the resource adapter.

Together, IMS Connector for Java and IMS Connect handle the data flow for

two-phase-commit processing.

This chapter provides an overview of two-phase commit and some key scenarios

that IMS Connect supports.

In this chapter:

v “Overview of Two-Phase Commit Protocol”

v “Distributed Two-Phase Commit Support” on page 84

v “Local Option Two-Phase Commit Support” on page 87

Overview of Two-Phase Commit Protocol

Two-phase commit protocol is comprised of a set of actions that ensure a

transaction involving multiple databases does not produce unsynchronized

updates. Two-phase commit provides a way for a series of database interactions

that are grouped into a single transaction to be completed or rolled back as one

transaction.

At the beginning of a two-phase commit transaction, an ID is generated and used

by an external transaction coordinator or resource manager to monitor and make

modifications to the state of the transaction. Each interaction within the two-phase

transaction is temporarily executed upon the associated databases. The results of

the interactions are then sent back to the application for processing. When the

two-phase commit transaction scope is met, a prepare call is sent to each database

that was accessed. The prepare call verifies that each database has made the

appropriate resources accessible to perform the interactions attempted within the

scope of the two-phase commit transaction. Upon receiving verification that each

database is ready to complete the interactions, a commit call is then sent to each

database.

At any point in time, prior to sending the commit call, the two-phase commit

transaction can be rolled back. If the transactions is rolled back, a rollback call is

sent to each database involved in the transaction and the temporary changes are

removed or discarded. If any database failures occur during the commit phase, the

external coordinator or resource manager indicates that a heuristic situation may

have been reached. The external coordinator either ignores or forgets the database

modifications that have already been committed and attempts to repeat or recover

the calls that failed until the calls are either successful or manually removed from

the external coordinator’s or resource manager’s logs.

© Copyright IBM Corp. 2000, 2007 83

Distributed Two-Phase Commit Support

Distributed two-phase commit protocol uses TCP/IP to communicate transactions

between various platforms (for example, Windows®, AIX®, Solaris, Linux®). A

distributed TCP/IP transaction normally involves the following components:

v An application component

v An application server

v A resource adapter

v A resource manager

v A transaction manager

v An enterprise information system (EIS)

In distributed two-phase commit protocol, a client issues a transaction that is

deployed by the application server. The application server acts as an external

transaction manager (external coordinator) to manage transactions across one or

more resource managers. To access the resource manager of an enterprise

information system, the external coordinator must use a resource adapter. IMS

Connector for Java (a resource adapter) accesses the resource manager (IMS)

through IMS Connect using TCP/IP.

IMS does not support X/Open XA protocol and only supports RRS. To participate

in two-phase-commit processing, IMS uses RRS (Resource Recovery Service) on

z/OS. As a result, IMS Connect communicates with RRS and passes to RRS the

transaction context from IMS Connector for Java. In turn, RRS as the syncpoint

coordinator coordinates the changes so that all or no updates are made to IMS. In

RRS, the set of changes that are made or not made within the transaction scope is

called a unit of recovery (UR).

IMS Connect plays dual roles in two-phase-commit processing. IMS Connect, acts

as an extension to RRS (the syncpoint manager) and is considered the server

distributed syncpoint resource manager (SDSRM). As the SDSRM, IMS Connect

allows RRS to communicate with other syncpoint managers as needed to ensure

coordination of the distributed resources the application accesses. IMS Connect also

is the communication resource manager (CRM). As the CRM, IMS Connect controls

access to distributed resources by allowing an application component to

communicate with other application components and resource managers that may

be on different systems. Also, as the CRM, IMS Connect assists in processing a

syncpoint event and communicates the events to distributed syncpoint managers.

Distributed two-phase-commit processing can be broken down into two types of

transactions: global transaction which uses two-phase commit optimization or

global transaction which uses the one-phase commit protocol.

Global (XA) transaction with TCP/IP

A global (XA) transaction is controlled and coordinated by an external transaction

manager (external coordinator) to a resource manager. The transaction normally

requires coordination across multiple resource managers that may reside on

different platforms.

To access an enterprise information system, the external coordinator sends an XID,

which is defined by the X/Open XA standard, to a resource adapter. In addition to

the length and FormatID fields, an XID has two other parts: the global transaction

identifier (GTRID) and the branch qualifier (BQUAL). Because IMS does not

support X/Open XA protocol, IMS Connector for Java uses the LocalTransaction

IMS Connect Two-Phase Commit Support

84 IMS Connect Guide and Reference

and XAResources interfaces to participate in transactions coordinated by the

external coordinator to communicate with IMS Connect. IMS Connect maintains

the XID and associates it with a work context token and an IMS name. IMS

Connect then passes the context token to RRS.

IMS Connect sends the transaction output back to IMS Connector for Java which

returns the output data to the client. Upon sending the output message to IMS

Connector for Java successfully, IMS Connect sends an ACK to IMS to

acknowledge the message. After making requests to IMS, the application

component indicates to IMS Connector for Java that it is ready to commit the

changes. At this point IMS Connector for Java sends a prepare signal to IMS

Connect. IMS Connect, in turn, tells RRS to initiate the prepare phase. If the IMS

resource manager is prepared to commit, RRS collects the prepare to commit

confirmation from the resource manager and sends the results to IMS Connect. IMS

Connect will then send a request to commit signal to IMS Connector for Java to

request committing the changes.

When IMS Connect for Java receives the request to commit signal, it tells the

external coordinator that the resources on the IMS system can be committed. The

transaction manager determines the overall results. If all the resource managers can

commit, the transaction manager hardens the commit decision and will drive IMS

Connector for Java to commit the change. IMS Connector for Java sends a commit

signal to IMS Connect and IMS Connect tells RRS that the overall decision is to

commit all resources. RRS tells IMS to commit the changes. After IMS commits the

changes, RRS then returns to IMS Connect with the information that the local

resources have been committed. IMS Connect tells RRS to delete its log records.

Figure 6 on page 86 illustrates the flow of a distributed two-phase commit global

transaction. The transaction involves two IMSs. IMS Connect, RRS, and IMS must

all be on the same MVS image.

IMS Connect Two-Phase Commit Support

Chapter 7. IMS Connect Two-Phase Commit Support 85

Global Transaction with One-Phase Commit Optimization

If only one resource manager is registered in a transaction that is making changes

to shared resources, the transaction manager can perform one-phase-commit

optimization. An external coordinator is not required. The transaction manager can

send the phase two commit request directly to the resource manager to commit the

changes. IMS Connect does not have to go through phase one, prepare to commit of

the two-phase commit protocol and can go directly to phase two, commit request.

Figure 7 on page 87 illustrates the flow for a distributed one-phase commit global

transaction. IMS Connect, RRS, and IMS must all be on the same MVS image.

Figure 6. Distributed Two-Phase Commit Global Transaction Client Flow

IMS Connect Two-Phase Commit Support

86 IMS Connect Guide and Reference

Local Option Two-Phase Commit Support

IMS Connect also supports two-phase commit through Local Option. To enable

two-phase commit flow, two fields in the OTMA prefix must be set correctly before

the transaction is sent to IMS Connect. First, the OMHDRSYN flag must be set to

X'02' (for example, OMHDRSL2) to indicate SyncLevel Syncpt. Second, the

OMHDRCID field must be set to a 16-byte RRS context token. Then the ensuing

flow is as follows:

1. When IMS Connect detects that the incoming transaction contains the context

token and SyncLevel Syncpt, it calls RRS to switch the context off and pass the

transaction to IMS.

2. IMS receives the transaction from IMS Connect and schedules the transaction

for processing. Because the context token and SyncLevel Syncpt are set, the

transaction output will be delivered first before sync point processing is started.

When the client receives the transaction output, it is expected to send an

acknowledgement to IMS Connect.

3. When the client decides to start two-phase commit processing after it has sent

the positive acknowledgement to IMS Connect, it needs to inform RRS of its

decision. When RRS is informed of the decision, IMS will be driven for its own

two-phase commit processing. As a result, the transaction will commit or

backout based on the final decision from RRS.

Figure 8 on page 88 illustrates the two-phase commit flow using the local option

provided by IMS Connect. The IBM WebSphere Application Server for z/OS, IMS

Connect, RRS, and IMS must all be on the same MVS image.

Figure 7. Distributed One-Phase Commit Optimization Client Flow

IMS Connect Two-Phase Commit Support

Chapter 7. IMS Connect Two-Phase Commit Support 87

Figure 8. Two-Phase Commit Flow for Local Option

88 IMS Connect Guide and Reference

Part 2. IMS Connect Application Programming

Chapter 8. Protocols 91

Transaction Restrictions and Limitations 91

Conversational Support 91

OTMA Conversational Protocols 92

Send-then-commit, sync level=none 92

Send-then-commit, sync level=confirm . . . 93

IMS Connect Conversational Protocols 94

Send-then-commit, sync level=none,

transaction terminated from the program . . 94

Send-then-commit, sync level=none,

transaction terminated from the client . . . 95

Send-then-commit, sync level=confirm, ACK

response 96

Send-then-commit, sync level=confirm, NAK

response 97

Commit Mode and Synch Level Definitions . . . 97

Purging Undeliverable Commit-Then-Send Output 98

Specifying the Purge Function For Undeliverable

Commit-Then-Send Output 99

When IMS Purges Undeliverable

Commit-Then-Send Output 99

The Purge Function, Multiple-Message

Output, and NAKs 99

Rerouting Commit-Then-Send Output 100

Specifying the Reroute Function For

Commit-Then-Send Output 101

Specifying a Destination for Rerouted Output 101

When IMS Reroutes Commit-Then-Send Output 102

The Reroute Function, Multiple-Message

Output, and NAKs 102

Recoverable IMS Transactions 103

Send Only Protocol 104

Send only with acknowledgement protocol . . 104

Send only with serial delivery protocol 105

Resume Tpipe/Receive Protocol for Asynchronous

Output 105

Socket Connections 107

Persistent Sockets 108

Transaction Sockets 108

Non-Persistent Sockets 108

Setting Socket Types 108

Socket Processing for Transactions 109

Time-out intervals on input messages 110

Timer interval specifications 112

Cancelling a message timer 117

Asynchronous Output Support 118

Implementing Asynchronous Output Support 119

Enabling End User Asynchronous Output

Requests 120

Managing and Controlling Asynchronous

Output Messages 120

Single Message Control 121

Single with Wait Message Control 121

Noauto Message Control 122

Nooption Message Control 123

Auto Message Control 123

Execution Time Out During RESUME TPIPE

with Auto Message Control Option 124

Values for Asynchronous Output Processing 125

Retrieving asynchronous output from an

alternate OTMA hold queue 126

Asynchronous Output Message Flow 127

IMS Connect Client Call Flows 127

IMS Connect dead letter queue (HWS$DLQ) . . . 132

Chapter 9. Security Support 133

RACF PassTicket Support 133

PassTicket Replay Protection Considerations . . 135

SSL Connections 135

z/OS Key Management 136

SSL Initialization 136

SSL Default Setup 139

Sample JCL for RACF-Managed SSL 140

Chapter 10. IMS Connect XML Message

Conversion 143

IMS Connect XML Converters 143

Structure of the XML Message 144

Message Conversion Example 145

Chapter 11. Ping Support 147

Chapter 12. User Message Exits for IMS

Connect 149

HWSIMSO0 and HWSIMSO1 User Message Exits 149

HWSSMPL0 and HWSSMPL1 User Message Exits 150

HWSJAVA0 User Message Exit 151

HWSCSLO0 and HWSCSLO1 User Message Exits

for Control Center 151

© Copyright IBM Corp. 2000, 2007 89

||
|
||
|
||
|
||
||
|
||
||
||
|
||

||
||

||

||

|
||
||
||
||
||
||

 |
 | |
 | |
 |
 | |

 | |

 | |

 |
 | |
 | |
 | |
 | |

90 IMS Connect Guide and Reference

Chapter 8. Protocols

This chapter describes the transaction protocols, which are as follows:

v Conversational support

v Send only

v Resume Tpipe/Receive for asynchronous output

v Socket connections

v Asynchronous output support

In this chapter:

v “Transaction Restrictions and Limitations”

v “Conversational Support”

v “Commit Mode and Synch Level Definitions” on page 97

v “Purging Undeliverable Commit-Then-Send Output” on page 98

v “Rerouting Commit-Then-Send Output” on page 100

v “Recoverable IMS Transactions” on page 103

v “Send Only Protocol” on page 104

v “Resume Tpipe/Receive Protocol for Asynchronous Output” on page 105

v “Socket Connections” on page 107

v “Time-out intervals on input messages” on page 110

v “Asynchronous Output Support” on page 118

v “IMS Connect Client Call Flows” on page 127

Transaction Restrictions and Limitations

The following is a list of restrictions and limitations of specific transactions:

v IMS Fast Path, conversational, and non-recoverable transactions must be issued

using commit mode 1. This is a restriction of IMS OTMA.

v Non-response transactions can be sent to IMS Connect using the SENDONLY

option and must be issued using commit mode 0 on a transaction or persistent

socket.

Conversational Support

A conversational program is a message processing program (MPP) that processes

transactions made up of several steps. The MPP does not process the entire

transaction at once.

The conversational support for IMS Connect includes having conversational

transactions that let you retain uninterrupted connection (continuity) for messages

coming from a given client. Typically, a conversation is terminated when the

message is sent and dequeued and the application program has placed blanks in

the SPA, or the conversation is terminated when a COMMIT CONFIRMED

messaged is received from the client. For conversational support for IMS Connect,

conversations require a send-then-commit mode and are nonrecoverable.

© Copyright IBM Corp. 2000, 2007 91

|
|

This section describes and shows various conversational protocols as used with

IMS Versions 6 and 7. For more information about conversational protocols that are

used with IMS Version 5, see Table 45 on page 130.

OTMA Conversational Protocols

Send-then-commit, sync level=none

The send-then-commit flow (see Figure 9) sends IMS output before IMS completes

synchronization-point (hereafter referred to as sync-point) processing. To use the

send-then-commit flow, specify commit Mode 1 in the state-data section of the

message prefix.

 The sample flow shown in Figure 9 assumes the following:

v The transaction pipe is not synchronized.

v The synchronization level is specified as NONE in the state-data section of the

message prefix. Therefore, IMS does not request a response (an ACK) when

sending output.

Figure 9. Send-Then-Commit, Sync Level=None Flow for OTMA Conversational Protocols

Conversational Support

92 IMS Connect Guide and Reference

Send-then-commit, sync level=confirm

The send-then-commit flow (see Figure 10) assumed no synchronization for the

transactions as they are processed by IMS. This section shows a flow in which all

transactions are confirmed as they are received (each message requests a response).

 The sample flow shown in Figure 10 assumes the following:

v Commit mode 1 is specified in the state-data section of the message prefix.

v The transaction pipe is not synchronized.

v The synchronization level is specified as Confirm in the state-data section.

Figure 10. Send-Then-Commit, Sync Level=Confirm Flow for OTMA Conversational Protocols

Conversational Support

Chapter 8. Protocols 93

IMS Connect Conversational Protocols

Send-then-commit, sync level=none, transaction terminated from

the program

The send-then-commit flow (see Figure 11) sends IMS output before IMS completes

sync-point processing. To use the send-then-commit flow, specify commit mode 1

in the state-data section of the message prefix.

 This sample flow shown in Figure 11 assumes the following:

v The transaction pipe is not synchronized.

v The synchronization level is specified as NONE in the state-data section of the

message prefix. Therefore, IMS does not request a response (an ACK) when

sending output.

v The transaction is terminated from the program.

v IMS Connect will close the socket as soon as Commit confirmed has been sent

by IMS.

Figure 11. Send-Then-Commit, Sync Level=None (Transaction Terminated from Program)

Flow

Conversational Support

94 IMS Connect Guide and Reference

Send-then-commit, sync level=none, transaction terminated from

the client

The send-then-commit flow (see Figure 12) sends IMS output before IMS completes

sync-point processing. To use the send-then-commit flow, specify commit mode 1

in the state-data section of the message prefix.

 This sample flow shown Figure 12 assumes the following:

v The transaction pipe is not synchronized.

v The synchronization level is specified as NONE in the state-data section of the

message prefix. Therefore, IMS does not request a response (an ACK) when

sending output.

v The transaction is terminated from client.

Figure 12. Send-Then-Commit, Sync Level=None (Transaction Terminated from Client) Flow

Conversational Support

Chapter 8. Protocols 95

Send-then-commit, sync level=confirm, ACK response

The send-then-commit flow (see Figure 13) assumed no synchronization for the

transactions as they are processed by IMS. This section shows a flow in which all

transactions are confirmed as they are received (each message requests a response).

 The sample flow shown in Figure 13 assumes the following:

v Commit mode 1 is specified in the state-data section of the message prefix.

v The transaction pipe is not synchronized.

v The synchronization level is specified as Confirm in the state-data section.

v ACK can be replied to by a remote workstation before the check response

requested bit.

Figure 13. Send-Then-Commit, Sync Level=Confirm (ACK Response) Flow

Conversational Support

96 IMS Connect Guide and Reference

|

|
|
|

Send-then-commit, sync level=confirm, NAK response

The send-then-commit flow (see Figure 14) assumed no synchronization for the

transactions as they are processed by IMS. This section shows a flow in which all

transactions are confirmed as they are received (each message requests a response).

 The sample flow shown in Figure 14 assumes the following:

v Commit mode 1 is specified in the state-data section of the message prefix.

v The transaction pipe is not synchronized.

v The synchronization level is specified as Confirm in the state-data section.

v NAK can be replied to by either IMS Connect or a remote workstation before the

check requested bit.

v If the client forgets to send the NAK/ACK before it closes the socket, IMS

Connect will send the NAK to IMS and it will cause a U0119 abend.

Commit Mode and Synch Level Definitions

This section defines the different types of commit modes and synch levels.

Commit mode 0

Commit mode 0 is also called Commit-Then-Send. Commit mode 0 is

supported on both persistent and transaction sockets (see “Socket

Connections” on page 107) and supports only synch level CONFIRM.

Commit mode 1

Commit mode 1 is also called Send-Then-Commit. Commit mode 1 is

supported on both persistent and transaction sockets (see “Socket

Connections” on page 107) and supports synch levels NONE, CONFIRM,

and SYNCH.

Synch Level=NONE

The synchronization level specifies the level of acknowledgement for each

transaction. If a transaction is specified with Synch Level=NONE, no

acknowledgement is required from the client. The database changes are

still committed if the output message is sent to IMS Connect, but not to the

client. However, if OTMA is unable to deliver the output message to IMS

Figure 14. Send-Then-Commit, Sync Level=Confirm (NAK Response) Flow

Conversational Support

Chapter 8. Protocols 97

|

|
|
|

|
|
|
|

Connect, the input and output message are discarded, the database

changes are backed out, and the IMS application terminates and returns

with a 119 ABEND.

Synch Level=CONFIRM

If a transaction is specified with Synch Level=CONFIRM, the client is

required to send an acknowledgement to signal to IMS Connect whether or

not the output message was successfully (ACK) or unsuccessfully (NAK)

processed by the client.

 The processing of CONFIRM is dependent on the type of commit mode

that you specify:

v If Synch Level=CONFIRM is requested with commit mode 0, and the

client responds with ACK, the transaction processing is completed. If the

client responds with NAK, the output message will be requeued in IMS

for later delivery.

v If Synch Level=CONFIRM is requested with commit mode 1, and the

client responds with ACK, the database changes are committed. If the

client responds with NAK, the database changes are backed out and the

output message is discarded by IMS.

Synch Level=SYNCH

If a transaction is specified with Synch Level=SYNCH, two-phase commit

processing is required. Use Synch Level=SYNCH when multiple

participants are involved in sync point processing. Synch Level=SYNCH is

managed through RRS.

Purging Undeliverable Commit-Then-Send Output

You can configure OTMA to purge commit-then-send (commit mode 0) IOPCB

output when the output cannot be returned to the OTMA client application that

initiated the transaction. When the purge function is enabled and the OTMA client

application requests the purge function, OTMA dequeues and discards the

undeliverable commit mode 0 IOPCB output from the IMS output queue. The

purge function is requested on a message-by-message basis.

When the purge function is not specified, IMS stores undeliverable

commit-then-send IOPCB output on the asynchronous hold queue of the OTMA

tpipe that is associated with the client application that submitted the original input

message. The output message remains on the hold queue for later retrieval by

using a RESUME TPIPE request.

You can specify the purge function on either commit mode 0 or commit mode 1

input messages. However, when specified on commit mode 1 input messages, IMS

purges only commit mode 0 IOPCB output, such as might be generated by a

program-to-program switch. For example, if you specify the purge function on a

commit mode 1 transaction input that does a program switch to a second

transaction and the first transaction does an insert to the IOPCB, the purge

function applies only to the subsequent transactions that insert to the IOPCB.

Both user-written applications and IMS Connector for Java applications on either

persistent sockets or transaction sockets can request the purge function.

The following subtopics provide additional information:

v “Specifying the Purge Function For Undeliverable Commit-Then-Send Output”

on page 99

Commit Mode and Synch Level Definitions

98 IMS Connect Guide and Reference

|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|

|

|
|

v “When IMS Purges Undeliverable Commit-Then-Send Output”

Specifying the Purge Function For Undeliverable

Commit-Then-Send Output

If you are using either the HWSSMPL0 or the HWSSMPL1 IMS Connect user

message exit, you can enable the purge function for undeliverable

commit-then-send output by specifying the IRM_F3_PURGE flag (X'04') in the

IRM_F3 field for the following input messages from a client application:

v A SEND of a commit-then-send (CM0) transaction

v A SEND of a send-then-commit (CM1) transaction (A purge request on CM1

input applies only to any CM0 output that the CM1 input generates)

v A SEND of a NAK response to commit mode 0 output

The HWSIMSO0 or HWSIMSO1 IMS Connect user message exits do not support

the purge function.

Restriction: You cannot specify the purge function and the reroute function at the

same time. If both functions are specified, the output messages are

neither purged nor rerouted from the original output queue, and

OTMA issues message DFS2407W.

When IMS Purges Undeliverable Commit-Then-Send Output

If the purge function is specified, IMS purges commit-then-send (commit mode 0)

output when:

v IMS Connect receives a NAK response from the client application

v IMS Connect cannot deliver the output to the client application

v OTMA cannot deliver the output to IMS Connect

When IMS Connect receives a NAK response from the client or cannot deliver the

output to the client, IMS Connect notifies OTMA to discard the output message

from the IOPCB queue. When OTMA cannot deliver the output to IMS Connect,

OTMA discards the output without waiting for notification from IMS Connect.

If an IMS Connect STOPCLNT command is issued for a CLIENTID that specifies the

purge function, the reply message is purged.

IMS does not support the purge function for the following types of output:

v IMS application output to ALTPCBs. Even if the purge function is specified for

the IMS application commit mode 0 output, the purge function does not apply

to inserts to ALTPCBs.

v Commit mode 1 output. Any output from a commit mode 1 transaction that is

undeliverable is already discarded and the transaction is backed out.

v Output associated with a send-only transaction. Output for send-only

transactions is routed directly to the asynchronous hold queue.

v Output associated with a RESUME TPIPE input message. A RESUME TPIPE, by

definition, requires and guarantees that the output is delivered.

The Purge Function, Multiple-Message Output, and NAKs

After receiving a NAK from a client application for one of multiple related

messages for which the purge function is specified, IMS Connect issues purge

requests for the remaining output messages without attempting to deliver them to

the client application, and OTMA discards them from the IOPCB. How IMS

Commit Mode and Synch Level Definitions

Chapter 8. Protocols 99

|

|

|

|
|
|
|

|

|
|

|

|
|

|
|
|
|

|

|
|

|

|

|

|
|
|
|

|
|

|

|
|
|

|
|

|
|

|
|

|
|
|
|
|

Connect issues the purge requests differs slightly depending on whether the

multiple messages are generated by a single application program or by

program-to-program switches.

If there are multiple commit then send output messages for the same application

program on the IOPCB and the client issues a NAK for one of the messages, IMS

Connect sends the purge request to OTMA. IMS Connect also sends purge requests

to OTMA for the remaining output messages on the IOPCB without attempting to

deliver the output to the client application.

If there are multiple commit then send output messages generated by

program-to-program switches on the IOPCB and the client issues a NAK for one of

the messages, IMS Connect passes a purge request to OTMA and then generates

additional purge requests for any other related output messages currently on the

IOPCB queue. If program-to-program switches generate related output messages

after the initial NAK was received, IMS Connect issues purge requests for them as

well without passing the output to the client application.

Rerouting Commit-Then-Send Output

You can configure IMS to reroute commit-then-send (commit mode 0) IOPCB

output to an alternate OTMA tpipe hold queue for retrieval. Normally, if IMS

cannot return commit mode 0 output to the application client, the output is routed

to the tpipe hold queue that is associated with the client application that submitted

the original message; however, if you request the reroute function, IMS reroutes the

output to either a user-specified tpipe hold queue or to the default tpipe hold

queue HWS$DEF.

The reroute function can be used for managing output that is generated by

send-only transactions and for managing output that cannot be delivered to the

original client because the connection timed out or failed. The reroute function can

also be useful for asynchronous output in sysplex configurations in which the

tpipe hold queue is unknown to the client applications, such as when the z/OS

Sysplex Distributor is used.

You can specify the reroute function in either commit mode 0 or commit mode 1

input messages. However, in the case of commit mode 1, IMS can reroute only the

commit mode 0 output, such as might be generated by a program to program

switch.

Both user-written applications and IMS Connector for Java applications on either

persistent sockets or transaction sockets can request the reroute function.

Restrictions: The reroute function is not supported for:

v Commit mode 1 output messages

v Output resulting from a RESUME TPIPE request

v Output resulting from an insert to an ALTPCB

The following subtopics provide additional information:

v “Specifying the Reroute Function For Commit-Then-Send Output” on page 101

v “Specifying a Destination for Rerouted Output” on page 101

v “When IMS Reroutes Commit-Then-Send Output” on page 102

Commit Mode and Synch Level Definitions

100 IMS Connect Guide and Reference

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

|

|

|

|

|

|

Specifying the Reroute Function For Commit-Then-Send

Output

You enable the reroute function for commit-then-send output by setting a flag in

the IRM header of your input message or by coding your user-written user

message exit to set the appropriate flag in the OTMA state data.

If you are using either the HWSSMPL0 or the HWSSMPL1 IMS Connect user

message exit, you can enable the reroute function for commit-then-send output by

specifying the IRM_F3_REROUT flag (X'08') in the IRM_F3 field for the following

input messages from a client application:

v A SEND of a commit-then-send (CM0) transaction

v A SEND of a CM0 send-only transaction from a user-written client application

v A SEND of a send-then-commit (CM1) transaction (A reroute request on CM1

input applies only to any CM0 output that the CM1 input generates)

v A SEND of a NAK response to commit mode 0 output

The IMS Connect user message exits HWSIMSO0 and HWSIMSO1 do not support

the reroute function.

Restriction: You cannot specify the purge function and the reroute function at the

same time. If both functions are specified, the output messages are

neither purged nor rerouted from the original output queue and

OTMA issues message DFS2407W.

Specifying a Destination for Rerouted Output

Specifying a destination for rerouted output is optional. If a client application

requests that output be rerouted, but does not identify a reroute destination by

specifying a tpipe name, the default reroute destination is tpipe HWS$DEF.

You can define the reroute destination by specifying a reroute request name in one

or more of the following places:

v The RRNAME= keyword in the IMS Connect DATASTORE configuration file

v An IMS Connect user message exit

v The IRM_REROUT_NM in the fixed IRM format of an input message associated

with a SEND/RECEIVE request from a client application

v The IRM_REROUT_NM in the fixed IRM format of a NAK message from a

client application

You can specify a different reroute destination in a NAK message than is specified

in initial input messages; however, doing so can cause problems for transactions

that generate multiple output messages. If a different reroute destination is

specified in a NAK response and multiple output messages are generated by the

initial input message, OTMA reroutes only the message that triggered the NAK to

the destination that is specified in the NAK message. After receiving the NAK,

OTMA automatically reroutes any subsequent output messages for the same

transaction to the destination that was specified on the initial input message.

For more information about:

v The RRNAME= keyword of the IMS Connect DATASTORE configuration file,

see 14

v IMS Connect user message exits, see “User Exit Message Description and

Structures” on page 60

Rerouting Commit-Then-Send Output

Chapter 8. Protocols 101

|

|

|
|
|

|
|
|
|

|

|

|
|

|

|
|

|
|
|
|

|

|
|
|

|
|

|

|

|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|

v The fixed IRM format of input and NAK messages, “How IMS Connect

Communicates with a TCP/IP Client” on page 39

When IMS Reroutes Commit-Then-Send Output

If the reroute function is specified, IMS reroutes commit-then-send (CM0) output

when:

v IMS Connect cannot deliver the output to the client application

v IMS Connect receives a NAK response from the client application

v OTMA cannot deliver the output to IMS Connect

v IMS inserts output for send-only transactions to the IOPCB

When IMS Connect cannot deliver the output or when IMS Connect receives a

NAK, IMS Connect notifies OTMA to reroute the output message to the alternate

destination.

In the case of a NAK from the client application, OTMA reroutes the output if the

NAK is in response to an IMS application insert to the IOPCB. If the NAK is in

response to the output related to a RESUME_TPIPE, IMS does not reroute the

output.

In the event of a communication failure between OTMA and IMS Connect, OTMA

reroutes the commit-then-send output only if the original input message requested

the reroute function.

For send-only transactions, when the reroute function is specified OTMA always

reroutes the output.

If IMS Connect receives a disconnect notification on the TCP/IP READ for an ACK

or NAK response to an output message, IMS Connect requests that OTMA reroute

the commit mode 0 output only if the input message specified the reroute function.

If the client disconnects or times out prior to IMS Connect receiving the output

message from OTMA, the commit mode 0 output message is rerouted only if the

input message specified the reroute function.

The Reroute Function, Multiple-Message Output, and NAKs

If a transaction produces multiple output messages, OTMA reroutes the output

message that triggered the NAK and any subsequent output messages for the same

transaction that are on the IOPCB at the time the NAK is received. OTMA reroutes

subsequent output messages for the same transaction that arrive to the IOPCB after

the initial reroute only after triggering another NAK response.

If a transaction initiates a program-to-program switch and IMS Connect receives a

NAK to the first output message from an application program, OTMA reroutes

output messages sent by a secondary application program after a

program-to-program switch only if they are already on the output queue when the

initial NAK is received or if the original input message specifies a reroute

destination. If the original input message does not specify a reroute destination,

OTMA does not reroute undeliverable output generated after a

program-to-program switch.

If a send-then-commit (CM1) transaction message does a program-to-program

switch to a second commit mode 0 transaction message and the first transaction

does an insert to the IOPCB, IMS reroutes only the second or subsequent commit

mode 0 messages that insert to the IOPCB. IMS reroutes the commit mode 0

Rerouting Commit-Then-Send Output

102 IMS Connect Guide and Reference

|
|

|

|
|

|

|

|

|

|
|
|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

output of a commit mode 1 input message only if the client application requests

reroute in the original commit mode 1 transaction message.

Recoverable IMS Transactions

This section contains some scenarios when running recoverable transactions in the

IMS Connect environment. For each of the following scenarios:

v OTMA will have deleted the input message.

v Requeuing of the input message will not occur.

v For commit mode 1 (send-then-commit), none of the output is placed

(ENQUEUED) in the IMS queue.

Only commit mode 0 (commit-then-send) is treated as recoverable; Commit mode 1

is not recoverable. With the use of commit mode 0, IMS Connect creates a separate

TPIPE for each client that uses commit mode 0. This TPIPE remains in IMS, so a

fixed client name is highly recommended for each client that intends to use

commit mode 0.

The combination of commit mode and Sync level is critical. The following

scenarios describe the different uses and the results.

v With commit mode 1 and SYNC LEVEL = NONE:

The input message is processed by IMS and an output message is sent back to

IMS Connect, IMS Connect sends the message to the client, and any ACK/NAK

from the client in response to the output message would become an error

because the ACK/NAK are not expected and IMS Connect would have received

a message from the client with no application data.

v With commit mode 1 and SYNC LEVEL = CONFIRM:

The input message is processed by IMS and an output message is sent back to

IMS Connect, IMS Connect sends it to the client, and an ACK from the client

will result in the successful completion of the application. This scenario works as

expected.

The input message is processed by IMS and an output message is sent back to

IMS Connect, IMS Connect sends it back to the client, and a NAK from the

client will result in an IMS MPP 119 abend and an IMS message, DFS555. The

119 abend will back out the database changes, and both the input and output

messages are discarded. The result would be as if the system had never seen the

transaction, and a reentry of the transaction would be necessary.

v With commit mode 0 and SYNC LEVEL = CONFIRM:

The input message is processed by IMS and an output message is sent back to

IMS Connect, IMS Connect sends it to the client, and an ACK from the client

will result in the successful completion of the application. Commit mode 0 forces

the Synch level to Confirm. This scenario works as expected.

The input message is processed by IMS and an output message is sent back to

IMS Connect, IMS Connect sends it back to the client, and a NAK from the

client will result in the database changes not being backed out. The input

message is discarded and the output message is requeued to the IMS queue for

representation. These output messages will be moved to the hold asynchronous

queue by OTMA, and will be retrievable only with the RESUME TPIPE,

RECEIVE and ACK process.

Rerouting Commit-Then-Send Output

Chapter 8. Protocols 103

|
|

Recommendation: To run recoverable transactions in the IMS Connect

environment, use commit mode 0 and SYNC LEVEL = CONFIRM, and use a single

unique CLIENT_ID for each client that uses commit mode 0 and SYNC LEVEL =

CONFIRM

Send Only Protocol

The send only protocol allows client application programs to submit commit then

send (CM0) input messages to IMS in rapid succession without requiring the client

application to wait for a response. The send only protocol is designed for fast, high

volume input.

The output generated by IMS in response to send only input is stored on an

asynchronous hold queue associated with tpipe used by the client application and

can be retrieved later by issuing a RESUME TPIPE call.

If send only input must be processed by IMS serially, the send only protocol offers

two options that can help ensure that IMS receives the messages in the order in

which IMS Connect receives them from the client application:

v Send only with acknowledgement

v Send only with serial delivery
v Commit-then-send with commit confirmed flag on

The commit-then-send flow, also known as the IMS standard flow, enqueues IMS

output before sending it to the client. However, in this case for non-response

transactions, the client does not expect any output from IMS (see Figure 15).

The sample flow shown assumes the following:

– Commit mode 0 is specified in the state-data section of the message prefix.

– The transaction bit and the commit confirmed bit is specified in the

control-data section of the message prefix.

Send only with acknowledgement protocol

When the send only with acknowledgement protocol option is specified, the client

application receives an ACK response message from OTMA for each input message

successfully enqueued by IMS. All other output generated by the send only

transaction is sent to the asynchronous hold queue.

Figure 15. Send Only Protocol Flow

Recoverable IMS Transactions

104 IMS Connect Guide and Reference

|
|
|
|

|
|
|

|
|
|

|

|

|

|
|
|
|

Before sending the next send only input message, the client application must wait

for and process the ACK response. Because subsequent input messages sent by the

client application to the same tpipe are not sent until the preceding input message

has been enqueued, transaction messages are enqueued in IMS in the order in

which they were sent.

You can select the send only with acknowledgement protocol option by specifying

K for IRM_F4_SNDONLYA in the IRM_F4 field of the HWSSMPL0 and

HWSSMPL1 user message exit IRM format.

The send only with acknowledgement protocol option and the send only with

serial delivery protocol option are mutually exclusive. If both are specified, the

send only with acknowledgement protocol takes effect.

Send only with acknowledgement protocol option is not supported by HWSJAVA0.

Send only with serial delivery protocol

When the send only with serial delivery protocol option is specified, IMS Connect

ensures that the order in which it submits send-only transactions to OTMA is in

fact the order in which IMS receives the transactions.

You can select the send only with serial delivery protocol option by specifying

X'10' for IRM_F3_ORDER in the IRM_F3 field of the HWSSMPL0 and HWSSMPL1

user message exit IRM format.

The send only with serial delivery protocol option and the send only with

acknowledgement protocol option are mutually exclusive. If both are specified, the

send only with acknowledgement protocol takes effect.

Send only with serial delivery protocol option is not supported by HWSJAVA0.

Resume Tpipe/Receive Protocol for Asynchronous Output

v Commit-then-send (receive asynchronous output)

The commit-then-send flow, also known as the IMS standard flow, enqueues IMS

output before sending it to the client (see Figure 16 on page 106) with the client

application sending a positive acknowledgement (ACK) for both outputs. This

removes the output from the IMS queue.

Requirement: Use this protocol to retrieve asynchronous output from IMS. The

client signals how long to wait for output from IMS by specifying an IRM

timeout value with the IRM_TIMER field; the IRM timeout value affects the

RESUME TPIPE command sent to IMS Connect and the ACK/NAK sent to IMS

Connect.

Send Only Protocol

Chapter 8. Protocols 105

|
|
|
|
|

|
|
|

|
|
|

|

|

|
|
|

|
|
|

|
|
|

|

The sample flow shown assumes the following:

– The client sends the OTMA command RESUME TPIPE to ask IMS OTMA to

post the named Tpipe (the client name).

– The client issues a RECEIVE request to receive the output from IMS.

– The client sends ACK to IMS (required for commit-then-send).

– The client receives the next output from IMS.

– The client sends ACK to IMS.

– The client waits for the next output from IMS, or for Time out notification.

Figure 16. Commit-Then-Send, Receive Asynchronous Output (Client Waits for Output) Flow

Resume Tpipe/Receive Protocol

106 IMS Connect Guide and Reference

|

|
|
|

v Commit-then-send (receive asynchronous output)

The commit-then-send flow, also known as the IMS standard flow, enqueues IMS

output before sending it to the client (see Figure 17 on page 107) with the client

application sending a positive acknowledgement (ACK) for the first output

(removing the output from the IMS queue) and a NAK to the second output

(which results in the output remaining in the queue).

Requirement: Use this protocol with the timeout function. Otherwise, the client

will hang if there are no more messages to send.

The sample flow shown assumes the following:

– The client sends the OTMA command RESUME TPIPE to ask IMS OTMA to

post the named Tpipe (the client name).

– The client receives the output from IMS.

– The client sends ACK to IMS (required for commit-then-send).

– The client receives the next output from IMS.

– The client sends NAK to IMS.

– The message stays in the queue.

Socket Connections

IMS Connect provides three kinds of client TCP/IP connection protocols, which are

called sockets. The TCP/IP sockets define how IMS Connect manages client TCP/IP

connections when IMS Connect sends a disconnect message. The three socket types

provided by IMS Connect are:

v Persistent

v Transaction

v Non-persistent

Important: IMS Connect supports the three socket types when used to

communicate with IMS Version 7 and later releases. The three socket types are also

operational when IMS Connect communicates with IMS Version 5 and IMS Version

6.

Figure 17. Commit-Then-Send, Receive Asynchronous Output (Output Remains in Queue)

Flow

Resume Tpipe/Receive Protocol

Chapter 8. Protocols 107

Persistent Sockets

A persistent socket is a connection between the client and IMS Connect that remains

connected until either the client or IMS Connect specifically make a disconnect

request. A persistent socket can exist across multiple transactions.

There are two ways that the client can force a termination:

v By sending IMS Connect a disconnect request.

v By changing the socket type to ″transaction″ for the last transaction entered,

such as a logoff transaction.

IMS Connect can also terminate the connection when an error occurs.

The IMS Connect user message exits HWSIMSO0, HWSIMSO1, HWSSMPL0,

HWSSMPL1, HWSSOAP1, and HWSJAVA0 support the use of persistent sockets.

IMS Connector for Java also supports the use of persistent sockets.

A persistent socket supports both commit mode 1 and commit mode 0 processing.

Transaction Sockets

A transaction socket is a connection between the client and IMS Connect that

remains connected for a single transaction or IMS conversation. The connection can

be terminated only by IMS Connect, either when IMS itself terminates, or when an

error occurs.

A transaction socket supports both commit mode 1 and commit mode 0 processing.

Non-Persistent Sockets

A non-persistent socket maintains a connection for a single input-and-output pair to

IMS Connect. IMS Connect terminates the connection after sending the output to

the client for non-conversational and conversational transactions. If three

exchanges of input and output occur, the disconnect is issued three times, one for

each output from IMS Connect.

Restrictions: The HWSIMSO0, HWSIMSO1, HWSSMPL0, HWSSMPL1,

HWSSOAP1, and HWSJAVA0 user message exits do not support non-persistent

sockets, nor does IMS Connector for Java.

Setting Socket Types

Client code controls the socket settings, and the IMS Connect user message exits

and the user initialization exit enforce the socket settings.

The client selects the socket connection type by setting a flag in IRM, in the field

IRM_SOCT. The IRM_SOCT flag values are seen in Table 38.

 Table 38. IRM_SOCT Flags

Flag Definition Socket Type

IRM_SOCT_PER X’10’ Persistent

IRM_TRAN X’00’ Transaction

IRM_SOCT_NONPER X’40’ Non-persistent

The IRM_SOCT flag must be set for each message that is sent to IMS Connect.

Socket Connections

108 IMS Connect Guide and Reference

|
|
|

|
|
|

Recommendation: Set all messages that are associated with a single transaction to

the same socket type. If you do not, unexpected results can occur, as described in

the following examples:

v If the first message of a conversational transaction is set to persistent, and the

last message is set to transaction, then the socket connection will be terminated

following the last message.

v If one of the messages in the middle of the conversational transaction set the

socket type to transaction, and the IMS transaction terminates for some reason,

then IMS Connect will disconnect the socket. This is because ″transaction″ was

the last known socket type.

The user message exits will determine the socket type, then move the socket type

information to the OTMA User Header. To transfer the socket type information to

the OTMA User Header, the user exits set the OMUSR_FLAG1 field with one of

the following flags as seen in Table 39:

 Table 39. OMUSR_FLAG1 Flags

Flag Definition Socket Type

OMUSR_PSOCKET X’10’ Persistent

OMUSR_TRAN X’00’ Transaction

OMUSR_NPSOCKET X’40’ Non-persistent

Related Reading:

v For information about the OTMA User Header layout, see ″HWSOMPFX″ in

Appendix B, “OTMA Headers,” on page 175.

v For information about the IRM layout, see “How IMS Connect Communicates

with a TCP/IP Client” on page 39.

Socket Processing for Transactions

For a transaction on either a transaction socket or persistent socket, the client

application must always issue a TCP/IP READ following all TCP/IP SENDs. The

exceptions are for a TCP/IP SEND of SENDONLY or a TCP/IP SEND of an ACK

with IRM_TIMER set to NO_WAIT (X'E9' char Z), which is issued in response to a

READ of a RESUME_TPIPE single request.

The following scenarios describe transactions on a transaction socket. For

transactions on a persistent socket, the process is the same as transactions on a

transaction socket. However, the client application and IMS Connect do not

disconnect. Also, the client application will receive a return code of X'28' if there is

a timeout. The return code states a disconnect is not required.

For a Commit mode 0, Synch Level Confirm, non-conversational transaction on a

transaction socket, the following scenario occurs:

1. The client application issues a SEND to send the transaction data to IMS

Connect.

2. IMS Connect returns the output to the client application.

3. The client application receives the output, sends an ACK, and must issue a

READ to receive the next output or the timeout notification.

4. IMS Connect issues a timeout notification with the return code of either X'20' or

X'24' for a transaction socket, or an X'28' for a persistent socket. IMS Connect

will disconnect the socket for the X'20' and X'24' return codes, and will keep the

connection for the X'28' return code.

Socket Connections

Chapter 8. Protocols 109

|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|
|

|
|
|
|

5. The client application issues a disconnect for return codes X'20' and X'24'. The

client can issue a disconnect for return code X'28' or send in the next input.

For a Commit mode 1, Synch Level Confirm, non-conversational transaction on a

transaction socket, the following scenario occurs:

1. The client application issues a SEND of the transaction data to IMS Connect.

2. IMS Connect returns the output to the client application.

3. The client application receives the output, sends an ACK or NAK, and issues a

READ.

4. After an ACK is sent, the client receives one of the following responses:

v Deallocate commit if the IMS transaction completes successfully.

v A DFS message if the IMS transaction failed.

v A timeout notification with a return code of X'20' or X'24' for a transaction

socket or a return code of X'28' for a persistent socket. The client application

is required to issue a disconnect for return codes X'20' and X'24'.
5. The client application issues a disconnect.

For a Commit mode 1, Synch Level Confirm, conversational transaction on a

transaction socket, the following scenario occurs:

1. The client application issues a SEND to send the transaction data to IMS

Connect.

2. IMS Connect returns the output to the client application.

3. The client application receives the output, sends an ACK, and issues the next

input. The client continues SEND, READ, ACK until the transaction is

complete.

4. IMS Connect issues an RSM deallocate commit, deallocate abort, or a timeout

notification. The timeout notification returns either X'20' or X'24', which

indicates that IMS Connect will disconnect.

5. The client application issues a disconnect.

Time-out intervals on input messages

Each and every input message from the IMS Connect client can set a different

time-out value in the IRM_TIMER field of the fixed portion of the IRM. Set the

IRM_TIMER value to an appropriate wait time for IMS to return data to IMS

Connect.

The settings for the IRM_TIMER is enforced as described in the following list:

1. If the IRM_TIMER is set at X'00', the following default values are used:

v The default for all RESUME_TPIPE is two seconds.

v The default for all RESUME_TPIPE non-single ACK is .25 seconds.

v The value of the TIMEOUT parameter in the IMS Connect TCPIP

configuration statement for all others.
2. X'FF' and X'01' - X'9E' are used only when requested.

3. X'E9' (char Z) NO_WAIT means do not wait for any IMS output. NO_WAIT is

not valid on some Client SENDs. Because IMS Connect does not wait for

output from IMS, on a transaction socket connection, IMS Connect disconnects

the socket; and on a persistent socket connection, IMS Connect requests the

next input from the client rather than disconnect the socket. If NO_WAIT is

used, it is enforced as follows:

v There is a two second delay for:

Socket Connections

110 IMS Connect Guide and Reference

|
|

|
|

|

|

|
|

|

|

|

|
|
|

|

|
|

|
|

|

|
|
|

|
|
|

|

– RESUME_TPIPE request

– conversational trancode

– conversational data

– ACK or NAK associated with a conversational transaction

– non-conversational trancode
v A .25 second delay for each of the following is used:

– an ACK or NAK associated with a non-conversational transaction commit

mode one confirm

– an ACK or NAK associated with a RESUME_TPIPE with Asynch output

options AUTO or NOAUTO

– an ACK or NAK associated with non-conversational transaction commit

mode zero confirm
v NO_WAIT can be used for the following:

– a SENDONLY

– an ACK or NAK associated with RESUME_TPIPE with Asynch output

option SINGLE

Misuse of X'E9' can result in one of the following problems:

1. The socket disconnects.

2. An output message to the client on a transaction socket is lost.

3. A hang condition occurs between the client and IMS Connect or IMS Connect

and OTMA. For example, the client can be in a READ state waiting for output

from IMS Connect while IMS Connect is in a READ state waiting for input

from the client and OTMA is in READ state waiting for acknowledgement.

4. The deallocate commit or deallocate abort notification for CM1

SynchLevel=Confirm is lost.

5. Other unpredictable conditions occur.

To determine the appropriate wait time for IMS to return data to IMS Connect,

consider the following guidelines:

v For a client SEND of trancode and data or data only, the IRM_TIMER value

should be set to reflect the amount of time IMS Connect should wait for the

output from IMS. It is recommended that X'E9' not be used.

v If the client application knows that the last message received is the last output

message to the client for the transaction, then it is recommended that the

IRM_TIMER be set to X'01' (.01 of a second) for a client SEND of ACK or NAK.

The IRM_TIMER of X'01' is the smallest value that can be set for non-RESUME

TPIPE ACK messages. However, if the ACK message is associated with an

output from a RESUME TPIPE call, then an IRM_TIMER value of X'E9'

(character Z) is not recommended.

v For a client SEND of a RESUME TPIPE call, the timer value can be set as

follows:

AUTO option

X'FF' for dedicated output device, or

any X'00' to X'9E' values for non-dedicated output device

NOAUTO option

any value other than X'FF' or X'E9'

SINGLE or SINGLE with WAIT option

any value other than X'FF' or X'E9'

Socket Connections

Chapter 8. Protocols 111

Subsections:

v “Timer interval specifications”

v “Cancelling a message timer” on page 117

Timer interval specifications

You can specify timer values in several incremental ranges. The values in each

range are selected by entering a hexadecimal value in the IRM_TIMER field in the

IRM of the input message from the client. The hexadecimal values that can be

specified and the time intervals that they represent are:

v Increments of one one-hundredth of a second are represented by values of X'01'

to X'19', as shown in Table 40.

v Increments of five one-hundredth of a second are represented by values of X'1A'

to X'27', as shown in Table 41 on page 113.

v Increments of one second are represented by values of X'28' to X'63', as shown in

Table 42 on page 114.

v Increments of one-hundredth of a second are represented by values of X'63' to

X'9E', as shown in Table 43 on page 116.

v Default timer values, the no-timer option, and the indefinite wait option,

specified by X'00', X'E9', and X'FF' respectively, are shown in Table 44 on page

117.

The following table lists the IRM_TIMER values and their corresponding time in

increments of one one-hundredth of a second.

 Table 40. IRM_TIMER values in one one-hundredth of a second

Time Hexadecimal Value

.01 of a

second

X'01'

.02 of a

second

X'02'

.03 of a

second

X'03'

.04 of a

second

X'04'

.05 of a

second

X'05'

.06 of a

second

X'06'

.07 of a

second

X'07'

.08 of a

second

X'08'

.09 of a

second

X'09'

.10 of a

second

X'0A'

.11 of a

second

X'0B'

.12 of a

second

X'0C'

Socket Connections

112 IMS Connect Guide and Reference

Table 40. IRM_TIMER values in one one-hundredth of a second (continued)

Time Hexadecimal Value

.13 of a

second

X'0D'

.14 of a

second

X'0E'

.15 of a

second

X'0F'

.16 of a

second

X'10'

.17 of a

second

X'11'

.18 of a

second

X'12'

.19 of a

second

X'13'

.20 of a

second

X'14'

.21 of a

second

X'15'

.22 of a

second

X'16'

.23 of a

second

X'17'

.24 of a

second

X'18'

.25 of a

second

X'19'

The following table lists the IRM_TIMER values and their corresponding time in

five one-hundredths of a second.

 Table 41. IRM_TIMER values in five one-hundredths of a second

Time Value

.30 of a

second

X'1A'

.35 of a

second

X'1B'

.40 of a

second

X'1C'

.45 of a

second

X'1D'

.50 of a

second

X'1E'

.55 of a

second

X'1F'

.60 of a

second

X'20'

Socket Connections

Chapter 8. Protocols 113

Table 41. IRM_TIMER values in five one-hundredths of a second (continued)

Time Value

.65 of a

second

X'21'

.70 of a

second

X'22'

.75 of a

second

X'23'

.80 of a

second

X'24'

.85 of a

second

X'25'

.90 of a

second

X'26'

.95 of a

second

X'27'

The following table lists the IRM_TIMER values for time increments of one second

each.

 Table 42. IRM_TIMER time values in seconds

Time Value

1 second X'28'

2 seconds X'29'

3 seconds X'2A'

4 seconds X'2B'

5 seconds X'2C'

6 seconds X'2D'

7 seconds X'2E'

8 seconds X'2F'

9 seconds X'30'

10 seconds X'31'

11 seconds X'32'

12 seconds X'33'

13 seconds X'34'

14 seconds X'35'

15 seconds X'36'

16 seconds X'37'

17 seconds X'38'

18 seconds X'39'

19 seconds X'3A'

20 seconds X'3B'

21 seconds X'3C'

22 seconds X'3D'

23 seconds X'3E'

Socket Connections

114 IMS Connect Guide and Reference

Table 42. IRM_TIMER time values in seconds (continued)

Time Value

24 seconds X'3F'

25 seconds X'40'

26 seconds X'41'

27 seconds X'42'

28 seconds X'43'

29 seconds X'44'

30 seconds X'45'

31 seconds X'46'

32 seconds X'47'

33 seconds X'48'

34 seconds X'49'

35 seconds X'4A'

36 seconds X'4B'

37 seconds X'4C'

38 seconds X'4D'

39 seconds X'4E'

40 seconds X'4F'

41 seconds X'50'

42 seconds X'51'

43 seconds X'52'

44 seconds X'53'

45 seconds X'54'

46 seconds X'55'

47 seconds X'56'

48 seconds X'57'

49 seconds X'58'

50 seconds X'59'

51 seconds X'5A'

52 seconds X'5B'

53 seconds X'5C'

54 seconds X'5D'

55 seconds X'5E'

56 seconds X'5F'

57 seconds X'60'

58 seconds X'61'

59 seconds X'62'

60 seconds X'63'

The following table lists the IRM_TIMER values and their corresponding time

increments of one minute each.

Socket Connections

Chapter 8. Protocols 115

Table 43. IRM_TIMER time values in minutes

Time Value

1 minute X'63'

2 minutes X'64'

3 minutes X'65'

4 minutes X'66'

5 minutes X'67'

6 minutes X'68'

7 minutes X'69'

8 minutes X'6A'

9 minutes X'6B'

10 minutes X'6C'

11 minutes X'6D'

12 minutes X'6E'

13 minutes X'6F'

14 minutes X'70'

15 minutes X'71'

16 minutes X'72'

17 minutes X'73'

18 minutes X'74'

19 minutes X'75'

20 minutes X'76'

21 minutes X'77'

22 minutes X'78'

23 minutes X'79'

24 minutes X'7A'

25 minutes X'7B'

26 minutes X'7C'

27 minutes X'7D'

28 minutes X'7E'

29 minutes X'7F'

30 minutes X'80'

31 minutes X'81'

32 minutes X'82'

33 minutes X'83'

34 minutes X'84'

35 minutes X'85'

36 minutes X'86'

37 minutes X'87'

38 minutes X'88'

39 minutes X'89'

40 minutes X'8A'

Socket Connections

116 IMS Connect Guide and Reference

Table 43. IRM_TIMER time values in minutes (continued)

Time Value

41 minutes X'8B'

42 minutes X'8C'

43 minutes X'8D'

44 minutes X'8E'

45 minutes X'8F'

46 minutes X'90'

47 minutes X'91'

48 minutes X'92'

49 minutes X'93'

50 minutes X'94'

51 minutes X'95'

52 minutes X'96'

53 minutes X'97'

54 minutes X'98'

55 minutes X'99'

56 minutes X'9A'

57 minutes X'9B'

58 minutes X'9C'

59 minutes X'9D'

60 minutes X'9E'

The following table lists additional options that you can specify in the IRM_TIMER

field and the value you use to specify them.

 Table 44. Additional IRM_TIMER options

Timer option Value

Use default values. For RESUME TPIPE

calls and associated ACK messages, the

default is .25 seconds. For all other

SENDs, the default is the configuration

file TIMEOUT value.

X'00'

Do not wait. X'E9' C’Z’

Wait indefinitely. This setting is intended

to support the auto option of the

asynchronous output function.

X'FF'

Cancelling a message timer

User-written IMS Connect client applications can cancel the active message timer

when waiting on output from the datastore. The cancel timer feature prevents IMS

Connect clients that have specified a large time-out interval from being lost in the

event that the datastore does not send a reply. Without the cancel timer feature an

IMS Connect STOPCLNT command would have to be issued to clear the socket

connection. When a request to cancel the timer is submitted, IMS Connect notifies

the client.

Socket Connections

Chapter 8. Protocols 117

|

|
|
|
|
|
|
|

The cancel timer feature is supported by user-written message exit routines and the

sample user message exit routines HWSSMPL0 and HWSSMPL1.

Note that if a client is waiting in a CONN state after issuing a RESUME TPIPE call

and the datastore is closed by IMS or a STOPDS command, then the client receives

an RSM message with RC= X'2C' (or decimal 44).

A cancel timer request is specified by a C in the IRM_F4 field and can be

submitted in any one of the following protocol flows:

From a single client instance

1. Issue SEND of ACK.

2. Set local timer.

3. Issue READ for Response. Timer pops rather than receipt of data.

4. Issue Disconnect.

5. Issue Connect.

6. Issue SEND with Cancel Timer set in the IRM.

7. Issue Read for Cancel Timer. The user message exit issues return code 8

with a reason code of X'3B' (or decimal 59) in the RSM.

8. Issue Disconnect.

From two instances of the same client with the same client ID

1. From first client

a. Issue SEND of ACK (with, for example, a client ID of ICON01).

b. Issue READ for Response.
2. From second client instance

a. Issue Connect.

b. Issue SEND with Cancel Timer set in the IRM (with client ID of

ICON01).

c. Issue Read for Cancel Timer. The user message exit issues return

code 8 with a reason code of X'3B' (or decimal 59) in the RSM.

d. Issue Disconnect.
3. First client receives an RSM with a return code of X'2C' (or decimal 44)

and a reason code set to the value of the timer value. This instance

remains connected and is in RECV state.

a. Issue Disconnect or continue processing.

Asynchronous Output Support

Asynchronous output, whether it is the expected result of normal message

processing or it is unsolicited, is stored on an OTMA asynchronous hold queue

until a client application issues a RESUME TPIPE call to retrieve the output. The

asynchronous hold queue is identified by a tpipe name and is typically dedicated

to a specific client application; however, any client application can retrieve the

output of any other client application by specifying the client ID of the other

application in the alternate client ID field in a RESUME TPIPE call.

This section addresses asynchronous (unsolicited) output processing from a

user-written client application. For information on how to process asynchronous

output messages, see the IMS Connector for Java online help in WebSphere Studio

Application Developer Integration Edition Version 5.0.1.

Socket Connections

118 IMS Connect Guide and Reference

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|

|

|

|

|
|

|
|

|

|
|
|

|

|
|
|
|
|
|
|

IMS Connect can manage asynchronous output by not allowing it to flow while a

transaction is being processed. There are two types of asynchronous output:

v Output that is sent to a client from an IMS application using the ALTPCB.

v Any commit-then-send (commit mode 0) output that is being sent to the client

for which the client or IMS Connect sends a NAK in response to the output

message.

IMS Connect communicates the presence of asynchronous output to the client from

a commit mode 0 (commit-then-send) output response message in one of the

following ways:

v By returning the flag CSM_AMSG in the CSM_FLG1 field in the CSM (complete

status message)

v By returning the flag RSM_AMSG in the RSM_FLG1 field in the RSM (request status

message)

If you do not want to implement IMS Connect asynchronous output support, your

client application does not need to analyze the CSM or the RSM. IMS Connect

communicates the presence of asynchronous output regardless of whether a client

application requests the asynchronous output.

Use the RESUME TPIPE function to retrieve the asynchronous output from the

client. You can retrieve asynchronous output on both persistent and transaction

sockets.

Restrictions:

v Asynchronous output is supported only in IMS Version 7 and later releases.

Asynchronous output support is not operational when IMS Connect is

communicating with earlier IMS versions.

v IMS Connector for Java supports only the asynchronous option, SINGLE.

Subsections:

v “Implementing Asynchronous Output Support”

v “Managing and Controlling Asynchronous Output Messages” on page 120

v “Retrieving asynchronous output from an alternate OTMA hold queue” on page

126

v “Asynchronous Output Message Flow” on page 127

Implementing Asynchronous Output Support

You implement asynchronous output support by enabling the receipt of the

asynchronous output. The end user of the client application can decide when to

request the asynchronous output, or the client application itself can decide when to

request the asynchronous output.

Recommendation: Implement asynchronous output support so that the end user,

not the client application, decides when to request the asynchronous output. Such

an implementation provides these benefits:

v Ensures that the transaction input and output is separated from the

asynchronous output.

v Enables the end user to select, at a time interval of their choice, when to retrieve

the asynchronous output.

Asynchronous Output Support

Chapter 8. Protocols 119

|
|
|

|
|

|
|

|
|
|

Regardless of whether or not the end user or the client application requests the

asynchronous output, the following actions must occur, in this order:

1. Issue a CONNECT command.

2. A TCP/IP SEND of an OTMA RESUME TPIPE command, immediately

followed by a TCP/IP READ function from the primary client application.

3. A TCP/IP SEND of an ACK or NAK response on the receipt of the output

message. If the ACK was sent with a timer value of NOWAIT (NOWAIT is only

valid for RESUME TPIPE with SINGLE or SINGLE with WAIT option), go to

step 5. If NAK was sent, go to step 5.

4. A TCP/IP READ function from the primary client application. Repeat steps 2

and 3 until either all messages have been received, until the end user has

received all of the messages that they want, until an error occurs, or until time

out notification occurs.

5. Issue a DISCONNECT command, if you are using transaction sockets. If you

are using persistent sockets, the connection is still connected.

Enabling End User Asynchronous Output Requests

You can easily implement the CONNECT, RESUME TPIPE, READ, ACK/NAK,

and DISCONNECT functions on the client application’s screen with the buttons on

the graphical user interface.

v Create a CONNECT button.

v Create a RESUME TPIPE button to send a RESUME TPIPE command request to

IMS Connect. IMS Connect will then send a RESUME TPIPE request to OTMA.

v Create a READ button to issue a TCP/IP READ request. OTMA will send a

message to IMS Connect following the RESUME TPIPE or ACK response.

v Create an ACK/NAK button.

v You can also combine the READ and ACK requests into a single button that

issues the READ request, then sends an ACK on receiving the message.

v Create a DISCONNECT button.

Managing and Controlling Asynchronous Output Messages

Asynchronous output message functions are controlled by information that is

passed in the IRM and then set in the OTMA header by the message exit. There

are five types of asynchronous output message control: single, single with wait,

noauto, nooption, and auto. The IMS Connect user message exits, HWSSMPL1,

HWSSMPL0, HWSIMSO1, and HWSIMSO0 support all these options. To choose a

type of message control, the client code sets the IRM field IRM_FLG5 to be one of

the following values:

IRM_F5_ONE

Retrieves a single message (single).

IRM_F5_SWAIT

Waits for a single message if none are currently present in the IMS

message queue (single with wait).

IRM_F5_NOAUTO

Retrieves all messages that have been queued (noauto).

IRM_F5_AUTO

Retrieves all messages that have been queued, then retrieves any additional

messages that are queued later (auto).

Asynchronous Output Support

120 IMS Connect Guide and Reference

|

|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

IRM_F5

Makes RESUME TPIPE function like NOAUTO (nooption) when set to

X'00'.

 The HWSSMPL0, HWSIMSO0, HWSIMSO1, and HWSSMPL1 user message exits

default to the noauto type of asynchronous output message management.

The rest of this section describes the asynchronous output message control options

in detail.

Single Message Control

When using the single message control option (by setting field IRM_F5 to

IRM_F5_ONE), the client can receive only a single message. If there are no

messages in the IMS OTMA Asynchronous Queue for the client ID when the

request is made, no message will be returned and a time out will occur. Using the

single message control option will force the following sequence of events to occur:

1. Client issues CONNECT function.

a. Following the CONNECT function, if the socket type is persistent socket,

one or more transactions can be sent and the responses received before

RESUME TPIPE function processing.

b. If the socket type is a transaction socket, the RESUME TPIPE function must

be issued after the CONNECT function.
2. Client issues RESUME TPIPE function with the correct IRM settings.

3. Client issues RECEIVE function to receive the Asynchronous output.

4. Client sends ACK or NAK to IMS Connect.

a. The ACK or NAK can be sent with a user-specified numeric timeout value.

Or

b. Specify NOWAIT for the timeout value.
5. If a numeric timeout value is specified, the client must issue a RECEIVE

function to receive the timeout notification. If the NOWAIT option is specified,

no timeout notification is sent. Therefore, the client must not issue a RECEIVE

function if NOWAIT is specified.

6. IMS Connect disconnects the Socket from the Host end if the socket connection

is a transaction socket. If the socket connection is a persistent socket, IMS

Connect does not disconnect the socket.

7. Client must issue a DISCONNECT function if the socket connection is a

transaction socket. If the socket is a persistent socket, the client can either

DISCONNECT the socket or choose to send in a new request such as

SENDONLY, SEND of Tran code and Data, or issue another RESUME TPIPE

request.

If the client responds with a NAK rather than an ACK, the message that has been

NAKed will be put back on the OTMA Asynchronous Hold Queue, and can be

re-retrieved later. IMS Connect will continue to process as described in events five

through seven when a NAK is sent to IMS Connect by the Client.

Single with Wait Message Control

When using the single with wait message control option (by setting IRM_F5 to

IRM_F5_SWAIT), the client can receive only one single message; however, unlike

single message control, the single with wait message control can receive a message

that is placed in the IMS OTMA Asynchronous Queue for the client ID. Using the

single with wait message control option will force the following sequence of events

to occur:

Asynchronous Output Support

Chapter 8. Protocols 121

|
|
|

|
|

|
|

|
|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

1. Client issues CONNECT function.

a. Following the CONNECT function, if the socket type is persistent socket,

one or more transactions can be sent and the responses received before

RESUME TPIPE function processing.

b. If the socket type is transaction socket, then the RESUME TPIPE function

processing must be issued after the CONNECT function.
2. Client issues RESUME TPIPE function, with the correct IRM settings.

3. Client issues RECEIVE function to receive the Asynchronous output.

4. Client sends ACK or NAK to IMS Connect.

a. The ACK or NAK can be sent with a user-specified timeout notification.

Or

b. Specify NOWAIT for the timeout value.
5. If a numeric timeout value is specified, the client must issue a RECEIVE

function to receive the timeout notification. If the NOWAIT option is specified,

no timeout notification is sent. Therefore, the client must not issue a RECEIVE

function if NOWAIT is specified.

6. IMS Connect disconnects the Socket from the Host end if the socket connection

is a transaction socket. If the socket connection is a persistent socket, IMS

Connect does not disconnect the socket.

7. Client must issue a DISCONNECT function if the socket connection is a

transaction socket. If the socket is a persistent socket, the client can either

DISCONNECT the socket or choose to send in a new request such as

SENDONLY, SEND of Tran code and Data, or issue another RESUME TPIPE

request.

If the client responds with a NAK rather than an ACK, the message that has been

NAKed will be put back on the OTMA Asynchronous Hold Queue, and can be

re-retrieved later. IMS Connect will continue to process as described in events five

through seven when a NAK is sent to IMS Connect by the Client.

Noauto Message Control

When using the noauto message control option (by setting field IRM_F5 to

IRM_F5_NOAUTO), the client can receive all of the messages on the OTMA

Asynchronous Queue. Using the noauto message control option will force the

following sequence of events to occur:

1. Client issues CONNECT function.

a. Following the CONNECT function, if the socket type is persistent socket,

one or more transactions can be sent and the responses received before

RESUME TPIPE function processing.

b. If the socket type is transaction socket, then the RESUME TPIPE function

processing must be issued after the CONNECT function.
2. Client issues RESUME TPIPE function.

3. Client issues RECEIVE function to receive the Asynchronous output.

4. Client sends ACK to IMS Connect.

5. Client repeats events three and four until event six occurs.

6. IMS Connect disconnects the Socket from the Host end.

7. Client issues DISCONNECT function.

Using the noauto message control option, the client can always terminate by

issuing a DISCONNECT function after sending an ACK to IMS Connect.

Asynchronous Output Support

122 IMS Connect Guide and Reference

|

|
|
|

|
|

|

|

|

|

|

|

|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|

|

|
|

If the client responds with a NAK rather than an ACK, the message that has been

NAKed will be put back on the OTMA Asynchronous Hold Queue, and can be

re-retrieved later. IMS Connect will terminate the socket as described in event six.

Nooption Message Control

When using the nooption message control option (by setting field IRM_F5 to X'00'),

the client can receive all of the messages on the OTMA Asynchronous Queue.

Using the nooption message control option will force the following sequence of

events to occur:

1. Client issues CONNECT function.

a. Following the CONNECT function, if the socket type is persistent socket,

one or more transactions can be sent and the responses received before

RESUME TPIPE function processing.

b. If the socket type is transaction socket, then the RESUME TPIPE function

processing must be issued after the CONNECT function.
2. Client issues RESUME TPIPE function.

3. Client issues RECEIVE function to receive the Asynchronous output.

4. Client sends ACK to IMS Connect.

5. Client repeats events three and four until event six occurs.

6. IMS Connect disconnects the Socket from the Host end.

7. Client issues DISCONNECT function.

Using the nooption message control option, the client can always terminate by

issuing a DISCONNECT function after sending an ACK to IMS Connect.

If the client responds with a NAK rather than an ACK, the message that has been

NAKed will be put back on the OTMA Asynchronous Hold Queue, and can be

re-retrieved later. IMS Connect will terminate the socket as described in event six.

Auto Message Control

When using the auto message control option (by setting field IRM_F5 to

IRM_F5_AUTO), the client can receive all of the messages on the OTMA

Asynchronous Queue, and any messages that are placed on the OTMA

Asynchronous Queue after the current messages are all removed. Using the auto

message control option will force the following sequence of events to occur:

1. Client issues CONNECT function.

2. Client issues RESUME TPIPE function.

3. Client issues RECEIVE function to receive the Asynchronous output.

4. Client sends ACK to IMS Connect.

5. Client repeats events three and four.

If all messages have been removed from the queue, event three will remain active

(that is, in receive state) until the user-specified timer supplied in the IRM has

expired. IMS Connect will then terminate the socket. See “Values for Asynchronous

Output Processing” on page 125 for information on the timer value.

Recommendation: If event three or event five receives a disconnect of the socket,

the client should disconnect and then wait for a time interval before repeating

events one through five.

Using the auto message control option, the client can always terminate the

connection by either

Asynchronous Output Support

Chapter 8. Protocols 123

|
|
|

|
|
|
|
|

|

|
|
|

|
|

|

|

|

|

|

|

|
|

|
|
|

|
|
|
|
|
|

|

|

|

|

|

|
|
|
|

|
|
|

|
|

v responding to the output message with a NAK response, or

v sending a DEALLOCATE request rather than an ACK.

The message being processed is put back on the IMS output queue, and IMS

Connect terminates the socket.

If the client responds with an ACK, then issues a DISCONNECT, the connection is

only terminated between the client and TCP/IP; the client remains in a CONN

state with IMS Connect. When IMS Connect attempts to send the next

asynchronous output message, IMS Connect is notified that the connection has

been lost. IMS Connect does not acknowledge (NAK) OTMA, and the message is

put back on the IMS output queue. IMS Connect then terminates the socket. If the

client issues an ACK and then issues a disconnect, followed by a connect and

transmittal of data, IMS Connect responds with duplicate client ID and disconnects

the socket connection.

If the client responds with a NAK rather than an ACK in events three or five, the

message that has been NAKed will be put back on the OTMA Asynchronous Hold

Queue, IMS Connect will terminate the socket, and then those messages can be

re-retrieved later.

Note: The IMS Connect AUTO support is based on the premise that the socket

connection is dedicated as an output-only device. Combining RESUME TPIPE

(with auto asynch option specified) with transactions on the same socket

connection or SENDONLY on a persistent socket, can yield unpredictable results. If

you wish to change from RESUME TPIPE auto option mode to a mode that will

allow for transaction processing, you must change the auto asynch option by

performing one of the following options:

1. NAK one of the RESUME TPIPE outputs. This will change the asynch mode

from auto to noauto. To return to auto mode, a RESUME TPIPE with auto must

be specified.

2. On a timeout notification associated with the RESUME TPIPE AUTO, the client

application can disconnect, reconnect, and issue a RESUME TPIPE with single,

single with wait, noauto, or nooption with a very short IRM_TIMER value. The

IRM_TIMER value should be small, so that a timeout notification can be

returned immediately. Issuing a RESUME TPIPE with one of the four asynch

mode options, changes the mode from auto to one of the specified options.

After the RESUME TPIPE is issued and a timeout notification is returned, the

client application can send in a transaction.

3. On a timeout notification associated with the RESUME TPIPE AUTO, the client

application can disconnect, reconnect, and issue a RESUME TPIPE with single,

single with wait, noauto, or nooption with any valid IRM_TIMER value. Upon

receiving an output message, send an ACK with IRM_TIMER set to nowait or a

valid value. If the IRM_TIMER value is set to nowait, the client can then send

in a transaction. If the IRM_TIMER is set to a valid value, after receiving the

timeout notification, the client application can then send in a transaction.

Execution Time Out During RESUME TPIPE with Auto Message

Control Option

If you are using RESUME TPIPE with the auto message control option and the

IRM_TIMER value times out, you may experience some unpredictable results. If

the auto option is selected on the RESUME TPIPE and a timeout occurs, to get the

timeout notification and send transactions again, you must change the auto option

processing mode to noauto. To get out of the auto option processing mode, you

can choose one of the following options:

Asynchronous Output Support

124 IMS Connect Guide and Reference

|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|

v Issue RESUME TPIPE with the auto option and set a large IRM_TIMER value to

ensure that the client application will NAK the output. When the output is

NAK, OTMA will change the asynchronous mode from auto to noauto to stop

the sending of asynchronous output. The client application then issues READ to

retrieve the timeout notification. Upon receiving the timeout notification, the

client can begin sending transactions to IMS Connect.

v Issue RESUME TPIPE with the noauto option and set any value in the

IRM_TIMER field. After receiving ACK output, repeat READ of asynch output

and SEND of ACK until a timeout notification is received. (Issuing RESUME

TPIPE with noauto changed the processing mode from auto to noauto. This also

resets the asynchronous mode in OTMA to noauto where OTMA no longer

supports the automatic sending of asynch output when the IMS Message Queue

is empty.) The client application then issues READ to retrieve the timeout

notification. Upon receiving the timeout notification, the client can begin sending

transactions to IMS Connect.

v Issue RESUME TPIPE with noauto option and set any value in the IRM_TIMER

field. If you receive NAK output, the processing mode and OTMA Asynch mode

is reset to noauto. Resetting the OTMA Asynch mode to noauto stops the

sending of asynch output and the NAK output terminates the process. The client

application then issues READ to retrieve the timeout notification. Upon

receiving the timeout notification, the client can begin sending transactions to

IMS Connect.

v Issue RESUME TPIPE with single option and set any value in the IRM_TIMER

field. The OTMA Asynch mode is reset from auto to single and no more

asynchronous messages are sent. After you receive ACK or NAK output with an

IRM_TIMER setting that is anything other than NO_WAIT, the single option has

been completed and the client application can issue a READ to get the timeout

notification. Upon receiving the timeout notification, the client can begin sending

transactions to IMS Connect.

v Issue RESUME TPIPE with single option and set any value in the IRM_TIMER

field. The OTMA Asynch mode is reset from auto to single and no more

asynchronous messages are sent. After you receive ACK or NAK output with an

IRM_TIMER setting of NO_WAIT, the single option has been completed and the

client application does not have to issue a READ to get timeout notification. The

client application can start sending transactions to IMS Connect.

Values for Asynchronous Output Processing

This section provides values for asynchronous output processing for socket type,

commit mode, sync level, timer setting, and resume TPIPE options.

For a RESUME TPIPE request, set the values as follows:

Socket Type

Transaction or Persistent

Commit Mode

Zero

Sync level

Confirm

Timer setting

The timeout range required by your enterprise.

Resume TPIPE options

Single, single with wait, auto, noauto, or nooption.

Asynchronous Output Support

Chapter 8. Protocols 125

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

|
|

For example, if you want to create a dedicated output client that only receives

unsolicited output, start a client application to complete the following sequence:

1. The client application performs a connection sequence.

2. The client application sends a RESUME TPIPE request with the correct settings

in the IRM.

Recommendation: Set the IRM_TIMER value to X'FF', which causes IMS

Connect to override the TIMEOUT value in the configuration file and wait

forever.

3. The client application sends a TCP/IP READ to receive the output message.

4. The client application sends an acknowledgment (ACK1) and returns to the

TCP/IP READ.

The timer interval that is set in IRM_TIMER is a different timer value from the one

that is set in the IMS Connect configuration file (that value is TIMEOUT=).

The IRM_TIMER value is the wait value to wait for a RECEIVE issued from the

client following a RESUME TPIPE, or an ACK to the RECEIVEs following the

RESUME TPIPE.

See “Time-out intervals on input messages” on page 110 for more information.

Retrieving asynchronous output from an alternate OTMA hold

queue

Client applications can retrieve the asynchronous output of another client

application by issuing a RESUME TPIPE call that specifies the client ID of the

other application.

When IMS Connect passes a RESUME TPIPE call that specifies an alternate client

ID to OTMA, OTMA returns to the caller any asynchronous messages that are

queued to the tpipe that matches the alternate client ID.

Retrieving the asynchronous output of other client applications by specifying an

alternate client ID is required to retrieve output destined for IMS TM resource

adapter when automatically generated client IDs are used. Similarly, specifying an

alternate client ID is useful in Sysplex Distributor environments, where client

applications typically do not know on which tpipe hold queue their output is

queued.

In both of these cases, the asynchronous output is routed to a known tpipe hold

queue, and then any client application can retrieve the output through any instance

of IMS Connect simply by specify the tpipe name in the alternate client ID field of

either the IRM or the OTMA header.

For user-written client applications, to retrieve asynchronous output for another

application program:

1. In the IRM of the message for the RESUME TPIPE call:

v Specify X'01' in the IRM_ARCH field of the fixed IRM section

v Specify the client ID of the other client application program in the

IRM_RT_ALTCID field of the user-defined section of the IRM.

1. Set the IRM_TIMER value to the same value you set on the RESUME TPIPE.

Asynchronous Output Support

126 IMS Connect Guide and Reference

|
|

|

|
|

|
|
|

|

|
|

|
|

|
|
|

|

|

|

|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

|
|

For IMS TM resource adapter client applications, to retrieve asynchronous output

for another application program the client application must specify the following

values in the OTMA header:

1. The client ID of the other client application program in the

OMUSR_RT_ALTCID field of the OTMA header.

2. OMUSR_AL02 in the OMUSR_ARCLEV field.

Asynchronous Output Message Flow

Implementing asynchronous output support forces a commit-then-send (commit

mode 0) message flow. This flow requires an acknowledgment (ACK/NAK) from

the client.

If an IMS transaction running in commit-then-send message flow sends a message

to the client, and that message cannot be delivered, OTMA will react as though a

NAK had been sent to OTMA from IMS Connect, and the message will be placed

on the OTMA Hold Queue. OTMA will behave in this manner for whatever reason

that the NAK gets sent (for example, because the XCF connection is not available,

because IMS Connect has terminated, or because IMS Connect has lost

communications with TCP/IP).

Related Reading:

v For more information about the format of the OTMA headers, see

″HWSOMPFX″ in Appendix B, “OTMA Headers,” on page 175.

v For detailed information about the IRM layout, see “How IMS Connect

Communicates with a TCP/IP Client” on page 39.

v For detailed information about the CSM and RSM layouts, see “Output Message

From Message Exit” on page 71.

v For detailed information about the purge function, see “Purging Undeliverable

Commit-Then-Send Output” on page 98.

IMS Connect Client Call Flows

This section illustrates several sample IMS Connect client flows for conversational

and non-conversational transactions. Figure 18 on page 128, Figure 19 on page 128,

Figure 20 on page 128, Figure 21 on page 129, Figure 22 on page 129, and Figure 23

on page 129 are all examples of IMS Connect client flows for conversational and

non-conversational transactions. All sample flows shown apply to both persistent

and transaction TCP/IP sockets, and all flows use this protocol: commit mode 1

(send-then-commit), synch level = confirm, with ACK and NAK. The following

sample flows are illustrated:

v Non-conversational, running to successful completion using ACK

v Conversational, running to successful completion using ACKs

v Non-conversational, where client sends NAK in response to message

v Conversational, where client sends NAK in response to one of the messages

v Non-conversational, terminated by Host application before successful completion

of transaction

v Conversation terminated by Host application before successful completion of

transaction

Important: These figures describe and show various protocols as used with IMS

Versions 6 and 7. For more information about protocols that are used with IMS

Version 5, see Table 45 on page 130.

Asynchronous Output Support

Chapter 8. Protocols 127

|
|
|

|
|

|

CLIENT FLOW IMS CONNECT

REQUEST REQUEST

 SEND---------------->IRM/TRAN/DATA ----------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND-------------------->IRM/ACK-------------->RECEIVE

 RECEIVE<-------------------RSM<----------------SEND DEALLOCATE CONFIRM

 RSM reason code = DEALLOCATE CONFIRM X’61’ (97)

 (97 = IMS Host application has committed the transaction)

Figure 18. Non-conversational, Commit Mode=1, Synch Level=Confirm, and ACK

(Transaction Runs to Successful Completion)

CLIENT FLOW IMS CONNECT

REQUEST REQUEST

 SEND---------------->IRM/TRAN/DATA ----------->RECEIVE

 RECEIVE<-------------- DATA/CSM<---------------SEND

 SEND------------------->IRM/ACK--------------->RECEIVE

 SEND------------------->IRM/DATA-------------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND-------------------->IRM/ACK--------------->RECEIVE

 .

 .

 .

 SEND------------------->IRM/DATA ------------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND------------------->IRM/ACK--------------->RECEIVE

 RECEIVE<------------------RSM<-----------------SEND DEALLOCATE CONFIRM

 RSM reason code = DEALLOCATE CONFIRM X’61’ (97)

 (97 = IMS Host application has committed the transaction)

Figure 19. Conversational, Commit Mode=1, Synch Level=Confirm, and ACK (Transaction

Runs to Successful Completion)

CLIENT FLOW IMS CONNECT

REQUEST REQUEST

 SEND---------------->IRM/TRAN/DATA ----------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND-------------------->IRM/NAK-------------->RECEIVE

 RECEIVE<----------------------------------- IMS MESSAGE "DFS555.."

Figure 20. Non-conversational, Commit Mode=1, Synch Level=Confirm, and NAK

(Transaction Terminates with a NAK from Client Application)

IMS Connect Client Call Flows

128 IMS Connect Guide and Reference

Table 45 and Table 46 show the required actions to be taken when different IMS

DFSnnnnn messages or IMS command output is sent to the IMS Connect client. The

CLIENT FLOW IMS CONNECT

REQUEST REQUEST

 SEND---------------->IRM/TRAN/DATA ----------->RECEIVE

 RECEIVE<-------------- DATA/CSM<---------------SEND

 SEND-------------------->IRM/ACK--------------->RECEIVE

 SEND------------------->IRM/DATA-------------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND------------------->IRM/ACK--------------->RECEIVE

 .

 .

 .

 SEND------------------->IRM/DATA-------------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND------------------->IRM/NAK--------------->RECEIVE

 RECEIVE<----------------------------------- IMS MESSAGE "DFS555.."

Figure 21. Conversational, Commit Mode=1, Synch Level=Confirm, and NAK (Transaction

Terminates with a NAK from Client Application)

 CLIENT FLOW IMS CONNECT

 REQUEST REQUEST

 SEND---------------->IRM/TRAN/DATA ----------->RECEIVE

 Host Application abnormally terminates

 RECEIVE<----------------------------------- IMS MESSAGE "DFS555.."

Figure 22. Non-conversational, Commit Mode=1, Synch Level=Confirm, and ACK

(Transaction Terminated by Host Application Before Successful Completion)

CLIENT FLOW IMS CONNECT

REQUEST REQUEST

 SEND---------------->IRM/TRAN/DATA ----------->RECEIVE

 RECEIVE<---------------DATA/CSM<---------------SEND

 SEND------------------->IRM/ACK--------------->RECEIVE

 SEND------------------->IRM/DATA-------------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND-------------------->IRM/ACK-------------->RECEIVE

 .

 .

 .

 SEND------------------->IRM/DATA-------------->RECEIVE

 RECEIVE<----------------DATA/CSM<--------------SEND

 SEND-------------------->IRM/ACK-------------->RECEIVE

 Host Application abnormally terminates

 RECEIVE<----------------------------------- IMS MESSAGE "DFS555.."

Figure 23. Conversational, Commit Mode=1, Synch Level=Confirm, and NAK (Transaction

Terminated by Host Application)

IMS Connect Client Call Flows

Chapter 8. Protocols 129

two tables illustrate whether or not an ACK is required to be sent, both for synch

level Confirm and synch level None, when the client receives an IMS DFS message

or output from an IMS command.

Note: The client code can test the CSM_FLG1 byte for the presence of the

CSM_ACK_NAK flag; it can also test the RSM_FLG1 byte for the presence

of the RSM_ACK_NAK flag. It performs this test to determine if an ACK or

NAK is required. Otherwise, it performs the analysis outlined in Table 45

and Table 46.

Table 45 and Table 46 also define whether or not the client requires a READ in

order to receive the ″Deallocate Abort″ response (RSM) from IMS Connect. Notes

for both tables immediately follow Table 46.

 Table 45. IMS Connect Client Message Protocol Sequence for IMS DFS Messages and IMS

Command Output: Persistent Socket

Message Output

to Client

Persistent Socket

Commit Mode 1 Commit Mode 0

Synch Level

Confirm

Synch Level

None

Synch Level

Confirm

Synch Level

None

Invalid

transaction code

DFS064

DFS0641 DFS0641 N/A N/A

Transaction

stopped DFS065

DFS0651 DFS0651 N/A N/A

Transaction

abended DFS555

DFS5557 DFS5551 N/A N/A

Output DFS2082 DFS20822 DFS20821 N/A N/A

IMS Command

Output

Cmd output1 Cmd output1 N/A N/A

Security Failure

DFS1292

DFS12921 DFS12921 N/A N/A

Segment greater

than 32 K

DFS12945 DFS12945 N/A N/A

 Table 46. IMS Connect Client Message Protocol Sequence for IMS DFS Messages and IMS

Command Output: Transaction Socket

Message Output

to Client

Transaction Socket

Commit Mode 1 Commit Mode 0

Synch Level

Confirm

Synch Level

None

Synch Level

Confirm

Synch Level

None

Invalid

transaction code

DFS064

DFS0641 DFS0641 DFS0641 N/A

Transaction

stopped DFS065

DFS0651 DFS0651 DFS0651 N/A

Transaction

abended DFS555

DFS5557 DFS5551 DFS5557 N/A

Output DFS2082 DFS20822 DFS20821 No output3 N/A

IMS Command

Output

Cmd output1 Cmd output1 Cmd output4 N/A

IMS Connect Client Call Flows

130 IMS Connect Guide and Reference

Table 46. IMS Connect Client Message Protocol Sequence for IMS DFS Messages and IMS

Command Output: Transaction Socket (continued)

Message Output

to Client

Transaction Socket

Commit Mode 1 Commit Mode 0

Synch Level

Confirm

Synch Level

None

Synch Level

Confirm

Synch Level

None

Security Failure

DFS1292

DFS12921 DFS12921 DFS12921 N/A

Segment greater

than 32 K

DFS12945 DFS12945 DFS12976 N/A

Notes:

1. Does not require an ACK to DFS messages.

2. Requires both an ACK to DFS messages and a second read to get a deallocate response.

3. The read to receive the transaction output will time out. No data will be received.

OTMA treats commit mode=0 and Synch level=Confirm as asynchronous output. If the

IMS Host application does not return a message (insert to IOPCB), OTMA does not

send a deallocate. The TIMEOUT= value specified in the IMS Connect configuration file

will have to expire before the disconnect is complete.

4. Requires an ACK to command output. A second read is not required to get a deallocate

response. The command output gets treated as asynchronous output.

5. Does not require ACK to DFS1294 output. A second receive is required to receive the

DFS555 message.

6. Client will receive DFS1297 rather than DFS1294. The DFS1294 message does not

require an ACK. No DFS555 message gets sent, so a second receive is not required. The

application is committed, and the application output gets discarded because the

segment is larger than 32 K.

7. For IMS Versions 6 and 7, does not require an ACK to DFS messages.

For IMS Version 5, requires an ACK to DFS messages. To receive the deallocate

response (RSM), a second read is required.

For commit mode 1, there are three reason codes associated with a zero (0) return

code, and two reason codes associated with an X’04’ return code, which provide

information to the client application. The sample flows illustrate how each of these

codes are used. The code meanings are listed in Table 47.

 Table 47. Information Reason Codes for Commit Mode=1, Synch Level=Confirm

Return Code Reason Code Description

X’00’ 94 Response - only output from host from

non-conversation

X’00’ 95 Conversation - last output from host from

on conversation

X’00’ 96 Conversation/response - middle of

conversation

X’04’ 97 Deallocate commit - successful completion

of host application

X’04’ 98 Deallocate abort - abnormal termination of

host application

IMS Connect Client Call Flows

Chapter 8. Protocols 131

IMS Connect dead letter queue (HWS$DLQ)

If OTMA attempts to send a message to IMS Connect that does not contain a user

data section in the OTMA header, IMS Connect sends a NAK response to OTMA ,

OTMA stores the incomplete message on the IMS Connect dead letter queue, and

IMS issues message HWSD0255W. The IMS Connect dead letter queue is identified

by the tpipe name HWS$DLQ.

You cannot retrieve messages that do not contain the user data section of the

OTMA header by using the RESUME TPIPE call. Incomplete messages of this type

on HWS$DLQ can only be dequeued.

To dequeue a message from HWS$DLQ:

1. Stop HWS$DLQ by issuing the command /STOP TMEMBER tmembername TPIPE

hws$dlq.

2. Dequeue the message by issuing the command /DEQUEUE TMEMBER tmembername

TPIPE hws$dlq PURGE1.

3. Start HWS$DLQ by issuing the command /START TMEMBER tmembername TPIPE

hws$dlq.

To view the queue counts for HWS$DLQ issue the command /DISPLAY TMEMBER

tmembername TPIPE hws$dlq.

IMS Connect Client Call Flows

132 IMS Connect Guide and Reference

|

|
|
|
|
|

|
|
|

|

|
|

|
|

|
|

|
|

Chapter 9. Security Support

IMS Connect allows security support by checking the RACF flag. There are two

ways to activate the RACF flag:

v Set the RACF flag in the configuration file, HWSCFG00, by setting the flag to Y

as follows:

HWS ID=HWS01 RACF=Y

v Use the HWS command SETRACF to set the RACF flag as follows:

SETRACF ON

To check the setting of the RACF flag, you can issue the VIEW HWS command. After

you issue this command, you should see: HWSC0001 HWSID=HW01 RACF=Y

If you turn the RACF flag ON, IMS Connect calls RACROUTE REQUEST=VERIFY to

verify a user ID and password.

Security information is passed from clients in the IRM. See Table 5 on page 44 for

the security field data, and see Appendix C, “HWSSMPL0, HWSSMPL1,

HWSIMSO0, and HWSIMSO1 Security Actions,” on page 189 for descriptions of

the USERID and GROUPID results.

In this chapter:

v “RACF PassTicket Support”

v “SSL Connections” on page 135

RACF PassTicket Support

An alternative to the RACF password is a PassTicket. PassTicket allows you to

communicate with a host without using a RACF password. You can use PassTicket

to authenticate user IDs and log on to computer systems that contain RACF.

You can select PassTicket support through an IMS Connect client and send a

PassTicket in the IRM in place of a RACF password. IMS Connect issues a RACF

call using PassTicket and blanks out the PassTicket field in the OTMA User Data

Header before sending the message to IMS. Because PassTicket occupies the same

field as the RACF password and PassTicket cannot be translated to uppercase, the

RACF password is also not translated to uppercase. You can use a user message

exit to provide uppercase translation.

The IMS Connect PassTicket support parallels IMS PassTicket support.

v You can use existing APPLID definitions for newly connecting IMS Connect

clients.

v Each data store statement will have a new parameter APPLID=APPLname, where:

– each APPLID= can be a unique RACF APPLname for each data store

– each APPLID= can be the same name for each data store, as required for VGR

support, or can be unique per data store
v The default APPLID=APPLname value is blank.

v The IMS Connect client can pass an APPLID in the IRM to the user message exit

which sets the APPLID in the OTMA User Data Header or the user message exit

can pass and set the appropriate APPLID in the OTMA User Data Header.

© Copyright IBM Corp. 2000, 2007 133

HWSIMSO0 and HWSIMSO1 do not support passing an APPLID in the IRM.

However, they do support passing PassTicket in the IRM. The APPLID used by

HWSIMSO0 and HWSIMSO1 must be defined on the DATASTORE statement.

For PassTicket support, you are responsible for all definitions to RACF. You need

to establish the RACF encoding and decoding routines and to supply the encoding

routine to the distributed platform.

RACF PassTicket is only supported for customer-written client/server support.

This support will eventually be extended to IMS Connector for Java.

This support may require changes to the customer-written user message exits and

customer-provided Client/Server code. The following list describes options you

may select for PassTicket support:

v Support for passing an APPLname in the IRM to IMS Connect

This support has been added to the IRM definition. A new 8 byte field,

IRM_APPL_NM, has been added to the end of the IRM structure. If you want to

implement the PassTicket function, then the client code must pass the

APPLname to IMS Connect in this field.

Note: This will change the length of the IRM by 8 bytes and the total length of

the message by 8 bytes.

The supplied user message exits (HWSSMPL1 and HWSSMPL0) have been

modified so that a client can send an APPLname to IMS Connect in the

IRM_APPL_NM field.

If you choose this option, the only action you need to do is to pass the

APPLname in the IRM. HWSIMSCB and IMS Connect have been modified to

support this function.

v No support for passing an APPLname in the IRM to IMS Connect

This support has been added to the IRM definition. A new 8 byte field

IRM_APPL_NM has been added to the end of the IRM structure. If you do not

want to implement the PassTicket function, you have two options:

– Option 1: Blank APPLname

You can choose to pass a blank APPLname to IMS Connect in the

IRM_APPL_NM field to IMS Connect.

Note: This will change the length of the IRM by 8 bytes and the total length

of the message by 8 bytes.

The supplied user message exits (HWSSMPL1 and HWSSMPL0) have been

modified so that a client can send a blank APPLname in the IRM_APPL_NM

field to IMS Connect.

If you choose this option, the only action you need to do is to pass a blank

APPLname in the IRM. HWSIMSCB and IMS Connect have been modified to

support this blank APPLname function.

– Option 2: No APPLname

The customer can choose to pass no APPLname to IMS Connect in the

IRM_APPL_NM field to IMS Connect.

Note: This will not change the length of the IRM or the total length of the

message.

The supplied user message exits (HWSSMPL1 and HWSSMPL0) have been

modified so that a client does not have to send an APPLname in the

IRM_APPL_NM field to IMS Connect.

RACF PassTicket Support

134 IMS Connect Guide and Reference

User exits, HWSIMSO0 and HWSIMSO1 do not support PassTicket with

APPLname in the IRM.

If you choose this option, you do not need to perform any action.

HWSIMSCB and IMS Connect have been modified to support this function of

not passing an APPLname.

PassTicket Replay Protection Considerations

You may want to consider bypassing PassTicket replay protection if you have

multiple end-users sharing the same user ID. If you have multiple users with the

same user IDs, it is possible for them to request access to an application during the

same time interval. In this situation, the same PassTicket is generated for different

users. As a result, if PassTicket replay protection is not bypassed, the users will be

using the same PassTicket and be denied access to the application. Bypassing the

PassTicket replay protection allows the same PassTicket to be used by multiple

users.

Similarly, if you are stress testing your system where there is no think time driving

requests to IMS Connect and have numerous requests to the same application

occurring in the same time interval, you may want to consider bypassing

PassTicket replay protection. This option allows the same PassTicket to be used

within a ten minute period.

You can specify NO REPLAY PROTECTION in the APPLDATA field of the

PTKTDATA profile for one or more of the selected applications to allow the same

PassTicket to be generated within a ten minute period.

For additional information about no replay options, see z/OS Security Server RACF

Security Administrator’s Guide (SA22-7683), Chapter 7: Protecting General Resources.

SSL Connections

TCP/IP consistently and reliably transfers information across the internet domain,

but it does not secure the information that is transferred.

IMS Connect supports Secure Sockets Layer (SSL) Version 2.0, Version 3.0, and

Transport Layer Security (TLS) Version 1.0. Throughout this book, the term SSL is

used to describe both the SSL and TLS protocols.

SSL protects information from:

v Eavesdropping

v Data theft

v Traffic analysis

v Data modification

v Trojan horse browser / server

SSL ensures the transfer of sensitive information over the internet by securing

sockets through a combination of public and private and symmetric key

encryption. The public and private keys are used to initiate contact between the

client and the server and to establish authentication between one another. During

this handshake protocol, the client and server agree on how to encrypt and decrypt

information and define the format used to transmit the encrypted data. Symmetric

key encryption is used to encrypt and decrypt all of the data transferred between

the client and the server.

RACF PassTicket Support

Chapter 9. Security Support 135

X.509 certificates are used by both the client and server when securing

communications. The client must verify the server’s certificate based on the

certificate of the Certificate Authority (CA) that signed the certificate or based on a

self-signed certificate from the server. The server must verify the client’s certificate

(if requested) using the certificate of the CA that signed the client’s certificate. The

client and the server then use the negotiated session keys and begin encrypted

communications.

z/OS Key Management

SSL connections use public and private key mechanisms for authenticating each

side of the SSL session (the server side and the client side) and agree on bulk

encryption keys to be used for the SSL session. To use public and private key

mechanisms (PKIs), public and private key pairs must be generated. In addition,

X.509 certificates (which contain public keys) may either need to be created, or

certificates must be requested, received, and managed.

SSL for z/OS supports the following two methods for managing PKI private keys

and certificates:

v A z/OS shell-based program named gskkyman. gskkyman creates, fills in, and

manages a z/OS HFS file that contains PKI private keys, certificate requests, and

certificates. This z/OS HFS file is called a key database and, by convention, has

a file extension of .kdb.

v The z/OS Security Server (RACF) RACDCERT command. The RACDCERT

command installs and maintains PKI private keys and certificates in RACF. See

z/OS: Security Server RACF Command Language Reference, SA22-7687 for details

about the RACDCERT command.

RACF supports the management of multiple PKI private keys and certificates as

a group. These groups are called key rings. RACF key rings are the preferred

method for managing PKI private keys and certificates for SSL.

For more information about z/OS and SSL, see z/OS System Secure Sockets Layer

Programming, SC24-5901-02.

SSL Initialization

The TCP/IP variable SSLENVAR points to an SSL interface configuration file that

contains variable assignment statements that provide the information necessary for

SSL initialization.

When you are configuring the IMS Connect SSL interface, you must also consider

the ability of the IMS Connect client to support SSL connections.

The following example shows an SSL interface configuration file with the default

SSL configuration:

This is my SSL interface configuration file #

GSK_PROTOCOL_SSLV2=GSK_PROTOCOL_SSLV2_ON

GSK_PROTOCOL_SSLV3=GSK_PROTOCOL_SSLV3_ON

GSK_PROTOCOL_TLSV1=GSK_PROTOCOL_TLSV1_ON

GSK_KEYRING_FILE=IMSCONNECT

GSK_KEYRING_LABEL=IMS CONNECT

GSK_KEYRING_PW=

GSK_KEYRING_STASH_FILE=

SSL Connections

136 IMS Connect Guide and Reference

|
|
|

|
|

GSK_CLIENT_AUTH_TYPE=GSK_CLIENT_AUTH_FULL_TYPE

GSK_SESSION_TYPE=GSK_SERVER_SESSION

GSK_V2_CIPHER_SPECS=642

GSK_V3_CIPHER_SPECS=0906030201

The SSL interface configuration file can contain both variable assignments and

comments. Each variable assignment statement consists of a variable name and the

value that you assign to the variable. Variable assignment statements have the

following format: GSK_VARIABLE_NAME=value. Each comment in the SSL interface

configuration file begins with a number sign (#). For example, #This is a comment.

Variable assignment statements can continue across multiple lines. To continue a

variable assignment statement on the next line, add a blank space and a dash (“ -”)

at the end of the line. The line immediately following the blank space and dash

character sequence is then read as a continuation of the line. Any characters after

the blank space-dash sequence (″ -″) on the same line are ignored.

It is not possible to embed the blank space-dash (″ -″) character sequence within a

variable assignment.

For example, the following excerpt from an SSL configuration file has two variable

values that contain dashes, one without a blank space, “IMS-Ring”, and one with a

blank space, “IMSCONNECT - Test”:

// GSK_KEYRING_FILE=IMS-Ring

// GSK_KEYRING_LABEL=IMSCONNECT - Test

// GSK_KEYRING_PW=

// GSK_KEYRING_STASH_FILE=

When the above configuration file is processed, GSK_KEYRING_FILE=IMS-Ring

processes successfully, but GSK_KEYRING_LABEL=IMSCONNECT Certificate - Test

produces an error because the blank space and dash is read as an end of the line.

Consequently, the characters after the dash, “ Test”, are discarded and the

following line, GSK_KEYRING_PW=, is read as a continuation of the value assigned to

GSK_KEYRING_LABEL. To illustrate, here is the job log produced by the above

configuration file:

// HWSSSL00I GSK_KEYRING_FILE = "IMS-Ring"

// HWSSSL00I GSK_KEYRING_FILE...SUCCESS (rc = 0)

// HWSSSL00I GSK_KEYRING_LABEL = "IMSCONNECTGSK_KEYRING_PW="

// HWSSSL00I GSK_KEYRING_LABEL...SUCCESS (rc = 0)

// HWSSSL00I GSK_KEYRING_STASH_FILE = NULL

// HWSSSL00I GSK_KEYRING_STASH_FILE...SUCCESS (rc = 0)

The possible variables and the values associated with the variables are as follows:

GSK_KEYRING_FILE

Name of the key database or RACF keyring. If a RACF key ring is

specified, it must be an existing key ring and the current user ID must

have READ access to the IRR.DIGTCERT.LISTRING and the

IRR.DIGCERT.LIST resources in the FACILITY class.

GSK_KEYRING_LABEL

Label name in the key database file of RACF key ring used. If this is not

set, or set to NULL, the default key database or key ring entry is used.

GSK_KEYRING_PW

Password of the key database. This must be NULL when a RACF key ring

is used or when a stash file is specified.

SSL Connections

Chapter 9. Security Support 137

|
|
|
|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

GSK_KEYRING_STASH_FILE

Name of the file that contains the password for the keyring. This value

must be NULL when a RACF key ring is used.

GSK_V2_CIPHER_SPECS

A null-terminated character string which specifies the ciphers to enable for

SSL V2.0. If this is not specified, the default cipher spec list is used. The

default list is 713642 if the Security Level 3 update is installed and 624 if it

is not installed.

1 - RC4 US

2 - RC4 Export

3 - RC2 US

4 - RC2 Export

6 - DES 56-bit Export

7 - Triple DES US

 Usage example: GSK_V2_CIPHER_SPECS=6321

GSK_V3_CIPHER_SPECS

A null-terminated character string that specifies the ciphers to enable for

SSL V3.0 and TLS 1.0. If no value is specified, the default cipher spec list is

used. The default list is 05040A0306090201 if the Security Level 3 update is

installed and 0306090201 if it is not installed.

01 - NULL MD5

02 - NULL SHA

03 - RC4 MD5 Export

04 - RC4 MD5 US

05 - RC4 SHA US

06 - RC2 MD5 Export

09 - DES SHA Export

0A - Triple DES SHA US

Usage example: GSK_V3_CIPHER_SPECS=0306090201

GSK_PROTOCOL_SSLV2

Used to enable or disable SSL V2.0. Possible values are

GSK_PROTOCOL_SSL_V2_ON and GSK_PROTOCOL_SSLV2_OFF.

Note: All SSL V2.0 non-US encryption schemes have been decrypted.

Therefore, SSL V2.0 should not be enabled unless the client does not

support SSL V3.0 or TLS V1.0 communication.

SSL Connections

138 IMS Connect Guide and Reference

GSK_PROTOCOL_SSLV3

Used to enable or disable SSL V3.0. Possible values are

GSK_PROTOCOL_SSLV3_ON and GSK_PROTOCOL_SSLV3_OFF.

GSK_PROTOCOL_TLSV1

Used to enable or disable TLS V1.0. Possible values are

GSK_PROTOCOL_TLSV1_ON and GSK_PROTOCOL_TLSV1_OFF.

GSK_CLIENT_AUTH_TYPE

Indicates the type of client authentication to take place. Two options are

available: GSK_CLIENT_PASSTHRU_TYPE and

GSK_CLIENT_AUTH_FULL_TYPE. The GSK_CLIENT_PASSTHRU_TYPE

specifies to not authenticate if the client sends a certificate.

GSK_CLIENT_AUTH_FULL_TYPE validates all received certificates. If the

certificate cannot be validated, the connection is terminated. If no

certificate is sent by the client, the connection is unsuccessful.

GSK_SESSION_TYPE

Indicates whether or not to require client authentication. A value of

GSK_SERVER_SESSION does not require authentication.

GSK_SERVER_SESSION_WITH_CL_AUTH does require client

authentication.

GSK_V2_SESSION_TIMEOUT

The number of seconds before the SSL V2.0 session identifier expires. The

valid range is from 0 to 100 seconds. If the session timeout value has not

expired, the client and server, as well as peer clients (multiple client

connections from same client computer) do not need to perform a

handshake when starting a new connection.

GSK_V3_SESSION_TIMEOUT

The number of seconds before the SSL V3.0 session identifier expires. The

valid range is from 0 to 100 seconds. If the session timeout value has not

expired, the client and server as well as peer clients (multiple client

connections from same client computer) do not need to perform a

handshake when starting a new connection.

GSK_V2_SIDCACHE_SIZE

The maximum number of session ID elements that can be stored in the SSL

V3.0 cache. The range is 0 to 32000 entries.

DEBUG_SSL

Indicates whether or not to turn on SSL debugging information. If the

debug information is requested, it can be found in the job output after the

IMS Connect job has completed. Possible assignment values are ON and

OFF.

Usage example: DEBUG_SSL=ON

SSL Default Setup

If the SSL initialization file does not exist, a default setup of SSL occurs. The

default setup variables and their values are:

GSK_PROTOCOL_SSLV2=GSK_PROTOCOL_SSLV2_ON

GSK_PROTOCOL_SSLV3=GSK_PROTOCOL_SSLV3_ON

GSK_PROTOCOL_TLSV1=GSK_PROTOCOL_TLSV1_ON

GSK_KEYRING_FILE=IMSCONNECT

GSK_KEYRING_LABEL=IMS CONNECT

GSK_KEYRING_PW=

GSK_KEYRING_STASH_FILE=

SSL Connections

Chapter 9. Security Support 139

GSK_CLIENT_AUTH_TYPE=GSK_CLIENT_AUTH_FULL_TYPE

GSK_SESSION_TYPE=GSK_SERVER_SESSION

GSK_V2_CIPHER_SPECS=642

GSK_V3_CIPHER_SPECS=0906030201

Note: When creating a new PROCLIB file, ensure that sequence numbers are not

automatically inserted in the SSL configuration file. The sequence numbers will

cause parsing errors of the SSL options.

Sample JCL for RACF-Managed SSL

RACF as a security manager can create certificates and keyrings, authorize

certificates, and store the certificates in a keyring. RACF can also be configured to

be a certificate authority. The following sample JCL illustrates how to set up

keyrings and certificates in RACF:

//SSLRACF JOB MSGLEVEL=(1,1),USER=OMVSADM,PASSWORD=,

// CLASS=A,MSGCLASS=A

//*

/*ROUTE PRINT THISCPU/CSDM09

// EXEC PGM=IKJEFT01

//SYSTSPRT DD SYSOUT=*

//SYSABEND DD SYSOUT=*

//SYSTSIN DD *

* Remove labels from mykey and delete the key.

RACDCERT REMOVE(LABEL(’CLIENT’) RING(mykey))

RACDCERT DELETE(LABEL(’CLIENT’))

RACDCERT DELRING(mykey)

RACDCERT LIST(LABEL(’CLIENT’)

RACDCERT LISTRING(mykey)

* Remove labels from SSLRING and delete the key.

RACDCERT REMOVE(LABEL(’CONNECT’) RING(SSLRING))

RACDCERT DELETE(LABEL(’CONNECT’))

RACDCERT REMOVE(LABEL(’CERTAUTH’) RING(SSLRING))

RACDCERT DELETE(LABEL(’CERTAUTH’))

RACDCERT DELRING(SSLRING)

RACDCERT LIST(LABEL(’CONNECT’)

RACDCERT LIST(LABEL(’CERTAUTH’)

RACDCERT LISTRING(SSLRING)

* Create CLIENT certificate, export to dataset, and connect to mykey.

RACDCERT GENCERT-

 SUBJECTSDN(CN(’CLIENT’) OU(’IMS’) O(’IBM’) C(’US’))-

 SIZE(512) WITHLABEL(’CLIENT’)

RACDCERT EXPORT(LABEL(’CLIENT’)) DSN(CLIENT.CERT) FORMAT(CERTB64)

RACDCERT ADD(CLIENT.CERT) TRUST WITHLABEL(’CLIENT’)

RACDCERT ADDRING(mykey)

RACDCERT CONNECT(LABEL(’CLIENT’) DEFAULT RING(mykey))

RACDCERT LISTRING(mykey)

RACDCERT LIST(LABEL(’CLIENT’)

* Create SSLRING.

RACDCERT ADDRING(SSLRING)

* Create CERTAUTH certificate, export to dataset, and connect to SSLRING

RACDCERT CERTAUTH GENCERT-

 SUBJECTSDN(CN(’CERTAUTH’) OU(’IMS’) O(’IBM’) C(’US’))-

 KEYUSAGE(CERTSIGN) WITHLABEL(’CERTAUTH’)

RACDCERT CERTAUTH EXPORT(LABEL(’CERTAUTH’)) DSN(CERTAUTH.CERT)

RACDCERT CONNECT(CERTAUTH LABEL(’CERTAUTH’) RING(SSLRING))

* Create CONNECT certificate, export to dataset, and connect to SSLRING.

RACDCERT GENCERT-

 SUBJECTSDN(CN(’CONNECT’) OU(’IMS’) O(’IBM’) C(’US’))-

 WITHLABEL(’CONNECT’)-

 SIGNWITH(CERTAUTH LABEL(’CERTAUTH’))

RACDCERT EXPORT(LABEL(’CONNECT’)) DSN(CONNECT.CERT)

RACDCERT CONNECT(LABEL(’CONNECT’) DEFAULT RING(SSLRING))

* ?????

RACDCERT ADD(CLIENT.CERT) TRUST WITHLABEL(’IMS CONNECT CLIENT’)

SSL Connections

140 IMS Connect Guide and Reference

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* ?????

RACDCERT LIST(LABEL(’CONNECT’)

RACDCERT CERTAUTH LIST(LABEL(’CERTAUTH’)

SETROPTS RACLIST(DIGTCERT) REFRESH

RDEFINE FACILITY IRR.DIGTCERT.LISTRING UACC(NONE)

RDEFINE FACILITY IRR.DIGTCERT.LIST UACC(NONE)

PERMIT IRR.DIGTCERT.LISTRING CLASS(FACILITY) ID(OMVSADM) ACCESS(ALTER)

PERMIT IRR.DIGTCERT.LIST CLASS(FACILITY) ID(OMVSADM) ACCESS(ALTER)

SETROPTS CLASSACT(FACILITY)

//

In this sample JCL, SSLRING is the sample keyring name and CONNECT is the

sample certificate name. RACF stores the certificates in the OMVSADM data set.

You must provide a copy of OMVSADM.CERTAUTH.CERT to the client’s keyring

so RACF can authorize the client.

SSL Connections

Chapter 9. Security Support 141

|
|
|
|
|
|
|
|
|
|

|
|
|
|

SSL Connections

142 IMS Connect Guide and Reference

Chapter 10. IMS Connect XML Message Conversion

IMS Connect XML conversion support allows IMS SOAP Gateway clients to submit

transaction messages to IMS Connect that contain XML user data without requiring

the COBOL IMS application program to process the XML. IMS Connect converts

the XML user data to a COBOL data structure and the COBOL IMS application

program processes it as a normal COBOL IMS transaction message.

The IMS Connect XML conversion support is provided by an XML adapter

function and an HWSSOAP1 message exit in conjunction with a COBOL XML

converter.

In the IRM of the input message, the IMS SOAP Gateway requests XML conversion

support by specifying an XML adapter name and an XML converter name. IMS

Connect reads the IRM when it receives an input message and, if XML conversion

is required, IMS Connect calls the XML adapter. The XML adapter then calls the

XML converter to perform the actual conversion. After the message is converted

from its XML format, IMS Connect then sends the resulting message to IMS.

When IMS Connect receives the response message from IMS, it calls the XML

adapter, which in turn calls the XML converter to convert the user data in the

response message into XML. IMS Connect then sends the output message to the

IMS SOAP Gateway.

Currently, the only IMS Connect client to support this feature is the IBM IMS

SOAP Gateway.

Subsections:

v “IMS Connect XML Converters”

v “Structure of the XML Message” on page 144

v “Message Conversion Example” on page 145

For information about enabling IMS Connect XML conversion support, see

“Configuring XML-to-COBOL Conversion Support for IMS SOAP Gateway” on

page 36.

IMS Connect XML Converters

When enabling IMS Connect XML conversion support, you must create the XML

converters that are used by IMS Connect to perform the actual conversion of the

data structures from XML to COBOL and back again.

The XML converters are COBOL application programs. The recommended method

of creating the XML converters is by using the separately licensed tool WebSphere

Developer for zSeries (Version 6 or above) to automatically generate the converters

from the COBOL copybook. You can find an example of an XML converter by

downloading the IMS SOAP Gateway Phone Book Sample from the IMS SOAP

Gateway home page at www.ibm.com/software/data/ims/soap/.

Each XML converter is based on the COBOL copybook of the IMS COBOL

application program that processes the message. Each IMS COBOL application that

process messages converted from XML must have its own unique XML converter.

© Copyright IBM Corp. 2000, 2007 143

|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|

|

|

|

|

|
|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|

The XML converters run in a z/OS LE enclave in the IMS Connect region and use

about 33 MB of storage. The IMS Connect region size must be increased to

accommodate this storage.

Structure of the XML Message

An XML schema defines the XML tags that correspond to the COBOL data

structures used by the COBOL IMS application program. The XML schema used

for XML conversion is based on the COBOL copybook of the COBOL IMS

application program. The XML schema is not required by IMS Connect, but the

application programmer that develops the Web service that will generate the XML

input messages will need it.

If you use the separately licensed tool WebSphere Developer for zSeries (Version 6

or above) to automatically generate the XML converters from the COBOL

copybook of the IMS application program, WebSphere Developer for zSeries also

generates the XML schema for you.

The XML tags defined by the XML schema directly correspond to the fields of the

COBOL data structure

The following is an example of an input and output message data structure

defined in the COBOL copybook of the sample phonebook application program

that is available at the IMS SOAP Gateway download site at www.ibm.com/
software/data/ims/soap/:

 01 INPUT-MSG.

 02 IN-LL PICTURE S9(3) COMP.

 02 IN-ZZ PICTURE S9(3) COMP.

 02 IN-TRCD PICTURE X(10).

 02 IN-CMD PICTURE X(8).

 02 IN-NAME1 PICTURE X(10).

 02 IN-NAME2 PICTURE X(10).

 02 IN-EXTN PICTURE X(10).

 02 IN-ZIP PICTURE X(7).

 01 OUTPUT-MSG.

 02 OUT-LL PICTURE S9(3) COMP.

 02 OUT-ZZ PICTURE S9(3) COMP.

 02 OUT-MSG PICTURE X(40).

 02 OUT-CMD PICTURE X(8).

 02 OUT-NAME1 PICTURE X(10).

 02 OUT-NAME2 PICTURE X(10).

 02 OUT-EXTN PICTURE X(10).

 02 OUT-ZIP PICTURE X(7).

 02 OUT-SEGNO PICTURE X(4)

Each field in the copybook has an equivalent XML tag that represents the field in

the XML message. XML tags are case-sensitive. The dash symbol ‘-’ in field names

in the copybook is represented as an underscore ‘_’ in the corresponding XML tags.

The SOAP Gateway client has to build the XML message using that XML schema.

For example, the IN-TRCD field from the above copybook is represented in XML by

the opening and closing tags <in_trcd> and </in_trcd>. In the data structure input

message, the value of IN-TRCD should be placed in the byte positions 5 to 14. In the

XML input message, the same value of IN-TRCD should be placed between the tags

<in_trcd> and </in_trcd>.

144 IMS Connect Guide and Reference

|
|
|

|
|

|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

An input messages from an IMS Connect client that uses the above example

COBOL copybook of the phonebook application has the following XML tags for

the equivalent COBOL data structure fields:

<INPUTMSG>

<in_ll> </in_ll>

<in_zz> </in_zz>

<in_trcd> </in_trcd>

<in_cmd> </in_cmd>

<in_name1> </in_name1>

<in_name2> </in_name2>

<in_extn> </in_extn>

<in_zip> </in_zip>

</INPUTMSG>

The above COBOL copybook of the phonebook application has the following XML

tags for the equivalent outbound COBOL data structure fields:

<cbl:OUTPUTMSG>

<out_ll> </out_ll>

<out_zz> </out_zz>

<out_msg> </out_msg>

<out_cmd> </out_cmd>

<out_name1> </out_name1>

<out_name2> </out_name2>

<out_extn> </out_extn>

<out_zip> </out_zip>

<out_segno> </out_segno>

</cbl:OUTPUTMSG>

The input message XML tags must be wrapped by opening and closing XML tags

based on the 01 INPUT-MSG. definition in the COBOL copybook. In the above

example the opening and closing tags are <INPUTMSG> and </INPUTMSG>.

The output message XML tags generated by the outbound converter are wrapped

by opening and closing XML tags that correspond to the 01 OUTPUT-MSG.

definition. In the above example the opening and closing tags are

<cbl:OUTPUTMSG> and </cbl:OUTPUTMSG>.

Look at the XML schemas to determine what these tags should be for each XML

converter.

For each XML message, not all tags have to be specified, just like not all fields are

required in the data structure message. The required fields are determined by the

COBOL application.

Message Conversion Example

This example describes the conversion of an XML input message to COBOL and its

COBOL response message to XML.

Below is an example of an XML message on input:

<INPUTMSG><in_ll>32</in_ll><in_zz>0</in_zz>

<in_trcd>IVTNO</in_trcd><in_cmd>DISPLAY</in_cmd>

<in_name1>LAST1</in_name1></INPUTMSG>

Below is an example of the same message after the XML data structure has been

converted to the COBOL data structure required by the COBOL phonebook

application program:

 IVTNO DISPLAY LAST1

Chapter 10. IMS Connect XML Message Conversion 145

|
|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|

|
|

|

|
|
|

|
|
|

|

Note: In the above example IVTNO starts in the fifth byte. The first four bytes are

used by IMS Connect and there are five spaces following LAST1.

The first four bytes of the data structure message, known as LLZZ, will be filled by

the XML adapter. The first two bytes, the LL part, will be filled with the length of

the data structure message. The second two bytes, the ZZ part, will be filled with

zeroes. The XML converter converts the XML message to the application-specific

format by taking the value within each XML tag, and placing it in its

corresponding field position. The converted message can then be processed by the

COBOL application and it returns an output message in its specific data structure.

The output message has to be converted to XML before it is returned back to the

Client. Below is an example of an output message and the message after XML

conversion.

Below is an example of the COBOL data structure of the reply message on output

from the IMS datastore:

 ENTRY WAS DISPLAYED DISPLAY LAST1 FIRST1 8-111-1111D01/R010001

In the above example, the text on the first line of the output message begins at the

fifth byte, after the four byte LLZZ field.

Below is an example of the same message after the COBOL data structure has been

converted to XML as required by the IMS Connect client:

<cbl>

<out_ll> 093</out_ll><out_zz> 000</out_zz>

<out_msg>ENTRY WAS DISPLAYED</out_msg><out_cmd>DISPLAY</out_cmd>

<out_name1>LAST1</out_name1><out_name2>FIRST1</out_name2>

<out_extn>8-111-1111</out_extn><out_zip>D01/R01</out_zip>

<out_segno>0001</out_segno></cbl>

In the example above, the values following the opening XML tags <out_ll> and

<out_zz> tags are from the first four bytes of the output COBOL data structure

message.

For outbound messages from the IMS application, the conversion is performed in

reverse. Each field in the application data structure is wrapped in its

corresponding XML tags. This conversion from an XML to a COBOL application

data structure message format, and vice versa, is performed by the COBOL XML

converter called by the XML adapter.

146 IMS Connect Guide and Reference

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|
|

Chapter 11. Ping Support

To determine whether or not IMS Connect is available, you can send a ping

request to IMS Connect. The ping support operates like a transaction and has the

appearance of a transaction code and data. When you send the request PING

IMS_CONNECT, the response is PING RESPONSE. The client sequence is:

1. Connect.

2. Send PING IMS_CONNECT (must be sent in uppercase).

3. Receive PING RESPONSE.

4. Disconnect.

The user message exits, HWSSMPL1, HWSSMPL0, and HWSJAVA provide ping

support. User message exits, HWSCSLO0, HWSCSLO1, HWSIMSO0, and

HWSIMSO1 do not support the ping function. If you write your own user message

exit, you can choose to add the ping function support in your exit.

© Copyright IBM Corp. 2000, 2007 147

148 IMS Connect Guide and Reference

Chapter 12. User Message Exits for IMS Connect

Several user message exits are provided with IMS Connect. Each of the message

exits allows you to call IMSLSECX, the security message exit, issue the RACF

function in these user message exit routines, or use the IMS Connect user RACF

function.

This chapter contains Product-Sensitive Programming Interface and Associated

Guidance Information.

In this chapter:

v “HWSIMSO0 and HWSIMSO1 User Message Exits”

v “HWSSMPL0 and HWSSMPL1 User Message Exits” on page 150

v “HWSJAVA0 User Message Exit” on page 151

v “HWSCSLO0 and HWSCSLO1 User Message Exits for Control Center” on page

151

HWSIMSO0 and HWSIMSO1 User Message Exits

IMS Connect Version 9 is the final and last release with which HWSIMSO0 and

HWSIMSO1 is shipped. It is recommended that you move to HWSSMPL1. You

may also move to HWSSMPL0. There are two ways of migrating to HWSSMPL0 or

HWSSMPL1.

1. Change the client code to support HWSSMPL0 or HWSSMPL1 by changing the

ASCII or EBCDIC settings in your code to one of the following options:

v Change *IRMREQ* to *SAMPLE* to move from HWSIMSO0 to HWSSMPL0.

v Change *IRMRE1* to *SAMPL1* to move from HWSIMSO1 to HWSSMPL1.

v Change *IRMREQ* to *SAMPL1* to move from HWSIMSO0 to HWSSMPL1.

You must also modify the client code to accept the fullword output message

length field preceding the LLZZ data.
2. Change either HWSSMPL1, HWSSMPL0, or both to accept the current settings

as they exist in the client code by changing the ASCII or EBCDIC setting in the

user message exit. You can select one of the following options:

v Change *SAMPLE* to *IRMREQ* to move from HWSIMSO0 to HWSSMPL0.

v Change *SAMPL1* to *IRMRE1* to move from HWSIMSO1 to HWSSMPL1.

v Change *SAMPLE* to *IRMRE1* to move from HWSIMSO0 to HWSSMPL1.

You must also modify the client code to accept the fullword output message

length field preceding the LLZZ data.

HWSIMSO0 and HWSIMSO1 are shipped as object code only (OCO) with IMS

Connect. The exits are shipped as OCO to allow IMS Connect and the user

message exit provided by TCP/IP to stay in sync without requiring a simultaneous

upgrade of both products when message exit functions change. If your installation

uses either HWSIMSO0 or HWSIMSO1 as its default, you must concatenate the

RESLIB that contains the IMS Connect-supplied message exit in front of the

TCP/IP RESLIB to ensure that the correct message exit is used.

Recommendation: If HWSIMSO0 or HWSIMSO1 is inadequate for your

installation, modify and use HWSSMPL0 or HWSSMPL1. See Part 1, “IMS Connect

Administration,” on page 1, for information about customizing user message exits.

© Copyright IBM Corp. 2000, 2007 149

HWSIMSO0 and HWSIMSO1 provide the following functions:

v Perform data translation of ASCII to EBCDIC for input messages.

v Perform data translation of EBCDIC to ASCII for output messages.

v Build the IMS Connect message structure (BPE and OTMA headers).

v If IMSLSECX (the security message exit) is link-edited with either of these

message exits, then the security message exit is called.

v Default to COMMIT MODE=1.

v Default to SYNC LEVEL=NONE.

v Set up RACF options.

v Analyze the following message header options:

– COMMIT MODE to override default.

– SYNC LEVEL to override default.

– MFS MOD name.

– ACK/NAK/DEALLOCATE.

– RACF options.

– If no Client ID is passed to the exit, then the message exits generate the Client

ID.

Restriction: Do not use the TCP/IP supplied message exit (EZAIMSO0) for IMS

Connect. This message exit does not support IMS Connect.

If any errors occur with the TCP/IP translate table, report those problems to

TCP/IP and notify them of the TCP/IP release you are currently using. When

corrections have been made to the translate table, link-edit this exit again to pick

up the corrected translate tables. If any errors occur with the IMS Connect user

message exit (HWSIMSO0 and HWSIMSO1) code, report those problems to IMS

Connect for corrections.

HWSSMPL0 and HWSSMPL1 User Message Exits

HWSSMPL0, HWSSMPL1, and the related MACROS are shipped as source code.

This allows you to modify the message exit for your installation’s requirements.

See Part 1, “IMS Connect Administration,” on page 1 for information about

customizing this user message exit.

The HWSSMPL0 and HWSSMPL1 user message exits provides the following

functions:

v Perform data translation of ASCII to EBCDIC for input messages.

v Perform data translation of EBCDIC to ASCII for output messages.

v Build the IMS Connect message structure (BPE and OTMA headers).

v If IMSLSECX (the security message exit) is link-edited with either of these

message exits, then the security message exit is called.

v Default to COMMIT MODE=1.

v Default to SYNC LEVEL=NONE.

v Set up RACF options.

v Analyze the following message header options:

– COMMIT MODE to override default.

– SYNC LEVEL to override default.

– MFS MOD name.

HWSIMSO0 and HWSIMSO1 User Message Exits

150 IMS Connect Guide and Reference

– ACK/NAK/DEALLOCATE.

– RACF options.

– If no Client ID is passed to the exit, the message exit generates the Client ID.

HWSJAVA0 User Message Exit

HWSJAVA0 and the related macros are shipped as source code. The reason this

user message exit is shipped as source code is to allow you the ability to modify

the message exit for installation uniqueness. HWSJAVA0 gives you the flexibility to

exit your messages and do your own security checking.

See Part 1, “IMS Connect Administration,” on page 1, for information about

customizing this user message exit.

HWSCSLO0 and HWSCSLO1 User Message Exits for Control Center

HWSCSLO0 and HWSCSLO1 are delivered as object code only (OCO) with IMS

Connect. The exit is formatted OCO to allow IMS Connect and the user message

exit for the Control Center to be synchronized without requiring simultaneous

upgrades of other products when message exit functions change. If your

installation activates the Control Center to communicate with OM, you must

include the HWSCSLO0 and HWSCSLO1 exit names in the EXIT= parameter of the

TCPIP statement.

HWSCSLO0 provides the following functions required by the Control Center:

v Performs data translation of ASCII to EBCDIC for input messages.

v Performs data translation of EBCDIC to ASCII for output messages.

v Builds the IMS Connect message structure (BPE and OM headers required by

IMS Connect) for input messages.

v Removes the IMS Connect internal OM headers for output messages.

v Defaults to COMMIT MODE=1.

v Defaults to SYNCH LEVEL=NONE.

v Analyzes the following message header options:

– COMMIT MODE override of the default

– SYNC LEVEL override of the default

– If no client ID is passed to the exit, then the message exit generates the client

ID

HWSCSLO1 provides the following functions required by the Control Center:

v Performs no translation output messages.

v Builds the IMS Connect message structure (BPE and OM headers required by

IMS Connect) for input messages.

v Removes the IMS Connect internal OM headers for output messages.

v Defaults to COMMIT MODE=1.

v Defaults to SYNCH LEVEL=NONE.

v Analyzes the following message header options:

– COMMIT MODE override of the default

– SYNC LEVEL override of the default

– If no client ID is passed to the exit, then the message exit generates the client

ID.

HWSSMPL0 and HWSSMPL1 User Message Exits

Chapter 12. User Message Exits for IMS Connect 151

Note: You do not need to specify the HWSCSLO0 and HWSCSLO1 exit names in

the TCPIP statement EXIT= parameter if the Control Center is not used.

HWSCSLO0 User Message Exit for Control Center

152 IMS Connect Guide and Reference

Part 3. IMS Connect Return and Reason Codes

Chapter 13. IMS Connect Return and Reason

Codes 155

HWSSMPL0, HWSSMPL1, HWSCSLO0, and

HWSCSLO1 155

HWSSOAP1 158

HWSIMSO0 and HWSIMSO1 159

IMS Connector for Java 161

Extended Local Return and Reason Codes 163

IMS Connect Post Codes 165

XML Adapter Error Codes 166

The IMS Connect HWS messages are documented in the IMS Version 9: Messages

and Codes, Volume 1.

© Copyright IBM Corp. 2000, 2007 153

|| | |

|
|

154 IMS Connect Guide and Reference

Chapter 13. IMS Connect Return and Reason Codes

This chapter describes the return and reason codes for the user message exits, IMS

Connector for Java, and the XML adapter. This topic contains Diagnosis,

Modification, or Tuning Information.

In this chapter:

v “HWSSMPL0, HWSSMPL1, HWSCSLO0, and HWSCSLO1”

v “HWSSOAP1” on page 158

v “HWSIMSO0 and HWSIMSO1” on page 159

v “IMS Connector for Java” on page 161

v “Extended Local Return and Reason Codes” on page 163

v “IMS Connect Post Codes” on page 165

v “XML Adapter Error Codes” on page 166

HWSSMPL0, HWSSMPL1, HWSCSLO0, and HWSCSLO1

The following return and reason codes, in Table 48 and Table 49 on page 156, are

sent by HWSSMPL0 and HWSSMPL1 to the client in the RSM fields

RSM_RETCOD/RSM_RSNCOD.

v Return codes:

 Table 48. Return Codes for HWSSMPL0 and HWSSMPL1

Hex Value Description

04 Exit request error message sent to client

before socket termination and the socket is

disconnected by IMS Connect

08 Error detected by IMS Connect and the

socket is disconnected by IMS Connect

0C Error returned by IMS OTMA and the socket

is disconnected by IMS Connect

10 Error returned by IMS OTMA when an

OTMA sense code is returned in the ″Reason

Code″ field of the RSM and the socket is

disconnected by IMS Connect. See the IMS

Open Transaction Manager Access Guide for

your installation’s version of IMS for sense

code descriptions.

14 Currently reserved

18 SCI error detected and the socket is

disconnected by IMS Connect, see IMS

Common Service Layer Guide and Reference for

reason codes.

1C OM error detected and the socket is

disconnected by IMS Connect, see IMS

Common Service Layer Guide and Reference for

reason codes.

© Copyright IBM Corp. 2000, 2007 155

|
|
|

|

|

Table 48. Return Codes for HWSSMPL0 and HWSSMPL1 (continued)

Hex Value Description

20 IRM_TIMER value has expired. The reason

code value is the value of the IRM_TIMER

and the socket is disconnected by IMS

Connect.

24 A default IRM_TIMER value has expired.

Either the IRM_TIMER value specified was

X'00' or an invalid value. The reason code

value is the value specified in the

IRM_TIMER field and the socket is

disconnected by IMS Connect.

28 IRM_TIMER value has expired. The reason

code value is the value of the IRM_TIMER.

The connection is not disconnected. The

socket remains connected.

2C Cancel Timer has completed successfully.

v Reason codes:

 Table 49. Reason Codes for HWSSMPL0 and HWSSMPL1

OMUSR Reason Code

Passed to Exit

Decimal Value in

RSM

Description

N/A 4 Input data exceeds buffer size.

N/A 5 Negative length value.

N/A 6 IRM length invalid.

N/A 7 Total message length invalid.

N/A 8 OTMA NAK with no sense code or

RC.

N/A 9 Contents of buffer invalid.

N/A 10 Output data exceeds buffer size.

N/A 11 Invalid unicode definition.

N/A 12 Invalid message, no data.

N/A 16 Do not know who client is.

N/A 20 OTMA segment length error.

N/A 24 FIC missing.

N/A 28 LIC missing.

N/A 32 Sequence number error.

N/A 34 Unable to locate context token.

N/A 36 Protocol error.

N/A 40 Security violation.

N/A 44 Message incomplete.

N/A 48 Incorrect message length.

NOSECHDR 51 Security failure — no OTMA

security header.

INVESECHL 52 Security failure — no security data

in OTMA security header.

HWSSMPL0, HWSSMPL1, HWSCSLO0, and HWSCSLO1

156 IMS Connect Guide and Reference

||

Table 49. Reason Codes for HWSSMPL0 and HWSSMPL1 (continued)

OMUSR Reason Code

Passed to Exit

Decimal Value in

RSM

Description

SECFNOPW 53 Security failure — no password in

OTMA user data header.

SECFNUID 54 Security failure — no user ID in

OTMA security header.

SECFNPUI 55 Security failure — no password in

OTMA user data and no user ID in

OTMA security header.

DUPECLNT 56 Duplicate Client ID used; the client

ID is currently in use.

INVLDTOK 57 Invalid token is being used —

internal error.

INVLDSTA 58 Invalid client status — internal error.

CANTIMER 59 Cancel Timer completed successfully.

NFNDCOMP 70 Component not found.

NFNDFUNC 71 Function not found.

NFNDDST 72 Datastore not found.

DSCLOSE 73 IMS Connect in shutdown.

STP/CLSE 74 Datastore/IMSplex in stop or close

process.

DSCERR 75 Datastore communication error.

STOPCMD 76 Datastore/IMSplex was stopped by

command.

COMMERR 77 Datastore/IMSplex communication

error to pending client.

SECFAIL 78 Security failure. RACF call failed,

IMS Connect call failed. See IMS

Connect error message on system

console.

PROTOERR 79 IMS Connect protocol error. See IMS

Connect error message on system

console.

NOTACTV 80 The IMSplex connection is not

active. The STOPIP command was

issued or the SCI address space is

not active.

INVLDCM1 93 Invalid commit mode of 1 specified

on the RESUME TPIPE request.

REQUEST 94 Request.

CONVER 95 Conversation.

REQ_CON 96 Request and conversation.

DEAL_CTD 97 Deallocate confirmed.

DEAL_ABT 98 Deallocate abort.

99 Default reason code.

HWSSMPL0, HWSSMPL1, HWSCSLO0, and HWSCSLO1

Chapter 13. IMS Connect Return and Reason Codes 157

|

HWSSOAP1

The following return and reason codes, in Table 50 and Table 51, are sent by

HWSSOAP1 to the client in the RSM fields RSM_RETCOD/RSM_RSM_RSNCOD.

v Return codes:

 Table 50. Return Codes for HWSSOAP1

Hex Value Description

08 Error detected by IMS Connect and the

socket is disconnected by IMS Connect

v Reason codes:

 Table 51. Reason Codes for HWSSOAP1

OMUSR Reason Code

Passed to Exit

Decimal Value in

RSM

Description

N/A 13 No Adapter name returned from

User Message Exit.

N/A 14 Message not processed by

Adapter(s).

N/A 15 Invalid Adapter return code.

N/A 100 Enqueue of AWE failed – internal

error. See IMS Connect error

message on the MVS Console log.

N/A 101 No buffer returned by Adapter –

internal error. See IMS Connect error

message on the MVS Console log.

N/A 102 Invalid buffer address returned by

Adapter – internal error. See IMS

Connect error message on the MVS

Console log.

N/A 103 Freemain of original input buffer

failed – internal error. See IMS

Connect error message on the MVS

Console log.

N/A 104 Freemain of original output buffer

failed – internal error. See IMS

Connect error message on the MVS

Console log.

N/A 105 Function not supported by User

Message Exit – internal error. See

IMS Connect error message on the

MVS Console log.

N/A 106 Invalid return code from User

Message Exit – internal error. See

IMS Connect error message on the

MVS Console log.

N/A 107 Adapter requested second output

buffer – internal error. See IMS

Connect error message on the MVS

Console log.

HWSSOAP1 Return and Reason Codes

158 IMS Connect Guide and Reference

|

|
|

|

||

||

||
|
|

|

||

|
|
|
|
|

|||
|

|||
|

|||

|||
|
|

|||
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

Table 51. Reason Codes for HWSSOAP1 (continued)

OMUSR Reason Code

Passed to Exit

Decimal Value in

RSM

Description

N/A 108 Adapter returned invalid data length

– internal error. See IMS Connect

error message on the MVS Console

log.

N/A 110 Invalid Adapter function requested.

N/A 111 Free original TCP/IP output buffer

failed.

HWSIMSO0 and HWSIMSO1

The following return and reason codes, in Table 52 and Table 53 on page 160, are

sent by HWSIMSO0 and HWSIMSO1 to the client in the RSM fields

RSM_RETCOD/RSM_RSM_RSNCOD.

v Return codes:

 Table 52. Return Codes for HWSIMSO0 and HWSIMSO1

Hex Value Description

04 Exit request error message sent to client

before socket termination and the socket is

disconnected by IMS Connect

08 Error detected by IMS Connect and the

socket is disconnected by IMS Connect

0C Error returned by IMS/OTMA and the

socket is disconnected by IMS Connect

10 Error returned by IMS OTMA when an

OTMA sense code is returned in the ″Reason

Code″ field of the RSM and the socket is

disconnected by IMS Connect. See the IMS

Open Transaction Manager Access Guide for

your installation’s version of IMS for sense

code descriptions.

14 Currently reserved.

18 SCI error detected and the socket is

disconnected by IMS Connect. See IMS

Common Service Layer Guide and Reference for

REASON codes.

1C OM error detected and the socket is

disconnected by IMS Connect. See IMS

Common Service Layer Guide and Reference for

REASON codes.

20 The IRM_TIMER value has expired. The

reason code value is the value of the

IRM_TIMER and the socket is disconnected

by IMS Connect.

24 A default IRM_TIMER value has expired.

Either the IRM_TIMER value specified was

X'00' or an invalid value. The reason code

value is the value of the IRM_TIMER and

the socket is disconnected by IMS Connect.

HWSSOAP1 Return and Reason Codes

Chapter 13. IMS Connect Return and Reason Codes 159

|

|
|
|
|
|

|||
|
|
|

|||

|||
|
|

|

Table 52. Return Codes for HWSIMSO0 and HWSIMSO1 (continued)

Hex Value Description

28 IRM_TIMER value has expired. The reason

code value is the value of the IRM_TIMER.

The connection is not disconnected. The

socket remains connected.

2C Cancel Timer has completed successfully

and the socket is disconnected by IMS

Connect.

v Reason codes:

 Table 53. Reason Codes for HWSIMSO0 and HWSIMSO1

OMUSR Reason Code

Passed to Exit

Decimal Value in

RSM

Description

N/A 4 Input data exceeds buffer size.

N/A 5 Negative length value.

N/A 6 IRM length invalid.

N/A 7 Total message length invalid.

N/A 8 OTMA NAK with no sense code or

RC.

N/A 9 Contents of buffer invalid.

N/A 10 Output data exceeds buffer size.

N/A 11 Invalid unicode definition.

N/A 12 Invalid message, no data.

N/A 16 Do not know who client is.

N/A 20 OTMA segment length error.

N/A 24 FIC missing.

N/A 28 LIC missing.

N/A 32 Sequence number error.

N/A 34 Unable to locate context token.

N/A 36 Protocol error.

N/A 40 Security violation.

N/A 44 Message incomplete.

N/A 48 Incorrect message length.

NOSECHDR 51 Security failure — no OTMA

security header.

INVESECHL 52 Security failure — no security data

in OTMA security header.

SECFNOPW 53 Security failure — no password in

OTMA user data header.

SECFNUID 54 Security failure — no user ID in

OTMA security header.

SECFNPUI 55 Security failure — no password in

OTMA user data and no user ID in

OTMA security header.

HWSIMSO0 and HWSIMSO1

160 IMS Connect Guide and Reference

|

|

Table 53. Reason Codes for HWSIMSO0 and HWSIMSO1 (continued)

OMUSR Reason Code

Passed to Exit

Decimal Value in

RSM

Description

DUPECLNT 56 Duplicate Client ID used; the client

ID is currently in use.

INVLDTOK 57 Invalid token is being used —

internal error.

INVLDSTA 58 Invalid client status — internal error.

CANTIMER 59 Cancel Timer completed successfully.

NFNDCOMP 60 Component not found.

NFNDFUNC 61 Function not found.

NFNDDST 62 Datastore not found.

DSCLOSE 63 IMS Connect in shutdown.

STP/CLSE 64 Datastore/IMSplex in stop or close

process.

DSCERR 65 Datastore communication error.

STOPCMD 66 Datastore/IMSplex was stopped by

command.

COMMERR 67 Datastore/IMSplex communication

error to pending client.

SECFAIL 68 Security failure. RACF call failed,

IMS Connect call failed. See IMS

Connect error message on system

console.

PROTOERR 69 IMS Connect protocol error. See IMS

Connect error message on system

console.

INVLDCM1 93 Invalid commit mode of 1 specified

on the RESUME TPIPE request.

REQUEST 94 REQUEST

CONVER 95 Conversation

REQ_CON 96 Request and conversation

DEAL_CTD 97 Deallocate confirmed

DEAL_ABT 98 Deallocate abort

99 Default reason code

IMS Connector for Java

The following return and reason codes, in Table 54 on page 162 and Table 55 on

page 162, are sent by IMS Connect to IMS Connector for Java in the OTMA User

fields OMUSR_RETCODE and OMUSR_RESCODE.

HWSIMSO0 and HWSIMSO1

Chapter 13. IMS Connect Return and Reason Codes 161

v Return codes:

 Table 54. Return Codes for OTMA

OMUSR_RETCODE received by IMS

Connector for Java (Hex value)

Description

04 Exit request error message sent to client

before socket termination and the socket is

disconnected by IMS Connect

08 Error detected by IMS Connect and the

socket is disconnected by IMS Connect

0C Error returned by IMS/OTMA and the

socket is disconnected by IMS Connect

10 Not valid for HWSJAVA0 (OTMA RETURN

code) and the socket is disconnected by IMS

Connect

14 Reserved

18 Not valid for HWSJAVA0 (SCI RETURN

code) and the socket is disconnected by IMS

Connect

1C Not valid for HWSJAVA0 (OM RETURN

code) and the socket is disconnected by IMS

Connect

20 The IRM_TIMER has expired. The reason

code value is the value of the IRM_TIMER

and the socket is disconnected by IMS

Connect.

24 A default IRM_TIMER value has expired.

Either the IRM_TIMER value specified was

X'00' or an invalid value. The reason code is

the value of the IRM_TIMER and the socket

is disconnected by IMS Connect.

28 IRM_TIMER value has expired. The reason

code value is the value of the IRM_TIMER.

The connection is not disconnected. The

socket remains connected.

2C Cancel Timer has completed successfully.

v Reason codes:

 Table 55. Reason Codes for OTMA

OMUSR_RESCODE received by IMS

Connector for Java

Description

NOSECHDR Security failure; no OTMA security header.

INVSECHL Security failure; no security data in the

OTMA security header.

SECFNOPW Security failure; no password in the OTMA

user data header.

SECFNUID Security failure; no user ID in the OTMA

user security header.

SECFNPUI Security failure; no password in the OTMA

user data header, and no user ID in the

OTMA user security header.

IMS Connector for Java

162 IMS Connect Guide and Reference

Table 55. Reason Codes for OTMA (continued)

OMUSR_RESCODE received by IMS

Connector for Java

Description

DUPECLNT Duplicate client ID was used; the client ID is

currently in use.

INVCHAR Security failure; an invalid character

detected in userid, groupname or password

field of an input message

INVLDTOK Invalid token is being used; internal error.

INVLDSTA Invalid client status; internal error.

CANTIMER Cancel Timer completed successfully.

NFNDCOMP Component not found.

NFNDFUNC Function not found.

NFNDDST Datastore not found.

DSCLOSE IMS Connect in shutdown.

STP/CLSE Datastore/IMSplex in stop or close process.

DSCERR Datastore communication error.

STOPCMD Datastore/IMSplex was stopped by a

command.

COMMERR Datastore/IMSplex communication error to

pending client.

SECFAIL Security failure; a RACF call failed; an IMS

Connect call failed. See the IMS Connect

error message on the system console.

PROTOERR An IMS Connect protocol error occurred. See

the IMS Connect error message on the

system console.

INVLDCM1 An invalid commit mode of 1 was specified

on the RESUME TPIPE request.

REQUEST Request.

CONVER Conversation.

REQ_CON Request and conversation.

DEAL_CTD Deallocate confirmed.

DEAL_ABT Deallocate abort.

Default reason code.

NFNDUOR Unit of recovery not found.

Extended Local Return and Reason Codes

The following return and reason codes, in Table 56 on page 164 and Table 57 on

page 164, are sent by IMS Connect to IMS Connector for Java, and are passed back

to the client application in the exception.

IMS Connector for Java

Chapter 13. IMS Connect Return and Reason Codes 163

||
|
|

v Return codes:

 Table 56. Extended Local Return Codes

Hex Value Description

04 Exit request error message sent to client

before socket termination and the socket is

disconnected by IMS Connect

08 Error detected by IMS Connect and the

socket is disconnected by IMS Connect

C Error returned by IMS/OTMA and the

socket is disconnected by IMS Connect

20 The IRM_TIMER has expired. The reason

code value is the value of the IRM_TIMER

and the socket is disconnected by IMS

Connect.

24 A default IRM_TIMER value has expired.

Either the IRM_TIMER value specified was

X'00' or an invalid value. The reason code

value is the value of the IRM_TIMER and

the socket is disconnected by IMS Connect.

v Reason codes:

 Table 57. Extended Local Reason Codes

Reason code Description

BPESVCER SVC was incorrectly set up.

CLNTSTOP Client is stopped. This might occur if the

client is stopped after an IMS timeout when

MPP is unavailable to process the

transaction.

CTXSWCHF RRS context switch failed.

ESTAEERR ESTATE setup error was detected.

HWSFAIL IMS Connect failed during a call.

HWSNOACT IMS Connect is currently inactive.

HWSSHUTP IMS Connect is shutting down.

INACTIVE The Local port is not currently active.

INTFABND The client interface to IMS Connect

abnormally ended during the call.

INVLDCID An invalid client ID was specified.

NAMTKNER An invalid IMS Connect name was specified.

NFNDSVT The connection token control block was not

found. This might indicate that the last 4

bytes of the connection token have been

corrupted.

RACFFAIL The SAF check against the client failed. The

client address space is not authorized to

access HWS.ICON_NAME in the facility

class.

SBFLBAD An invalid length for the send buffer was

detected.

Extended Local

164 IMS Connect Guide and Reference

IMS Connect Post Codes

IMS Connect post codes in Table 58 identify the IMS Connect Module that issued

the post or the meaning of the post code. For each post code, the first byte is

blank, and the following three bytes are alphabetic data. For example, in the post

code CMD, the code is ’bCMD’ where ’b’ is blank.

Post Codes:

 Table 58. IMS Connect Post Codes

Value (decimal) Module OR Meaning

CMD HWSCMDC0

CXQ HWXCXQH0

CXR HWSCXRP0

DCV HWSDREC0

DOC HWSDOCC0

DOP HWSDOPN0

DO3 HWSDOC30

DRE HWSDREC0

DSC HWSDSCH0

DSE HWSDSCE0

DSL HWSDSCL0

DST HWSDSTM0

DS2 HWSDSC20

DSE HWSDSC30

DS5 HWSDSC50

DXC HWSDDXCN

DXM HWSDXMT0

EQC HWSEQCL0

EQS HWSEQS00

ETR HWSETRM0

OCL HWSSOCL0

OCM HWSSOCM0

PCD HWSPSVT0

PCI HWSPCINF

PCR HWSPSVT0

PCS HWSPSVT0

PCV HWSPCVC0

PST Good post value

RCD HWSRCDR0

REC HWSSREC0

SCV HWSSCVC0

SOC HWSSOCL0

SOL HWSSOCL0

IMS Connect Post Codes

Chapter 13. IMS Connect Return and Reason Codes 165

Table 58. IMS Connect Post Codes (continued)

Value (decimal) Module OR Meaning

SOP HWSSOPN0

SST HWSSSTP0

STP HWSSSTP0

STR HWSSTRM0

SVT HWSSVTM0

SXT HWSSXTE0

VTD NWSSVTD0

XMT HWSSXMT0

$TI BPE timer call post

XML Adapter Error Codes

The following table lists all of the errors returned by the XML adapter for inbound

and outbound message processing. The XML adapter returns errors to the client in

either an XML adapter status message (XASM) or an XML error message. XASMs

are in the same format as IMS Connect’s RSM, except that its ID is “*XADPST*”.

 Table 59. XML Adapter Error Codes

Decimal Value in XASM RC Description

8 IMS Connect passed an invalid XML adapter

function code.

108 The XML adapter did not find the specified

XML Converter. Check that the XML

Converter is compiled and linked to the

correct data set.

112 The XML adapter failed to load the specified

XML Converter. Check that the XML

Converter is compiled and linked to the

correct data set.

116 The XML adapter failed to load the XML

Converter Metadata Service. Check that the

XML Converter is linked using its name and

has an alias where the last character of the

name is replaced by the letter “X”. For

example, if the XML Converter name is

XMLCNVD, then link it with entry name of

XMLCNVD and alias of XMLCNVX.

118 The PreInit table is full. The XML adapter

failed to delete an entry from the table. This

is an internal error. If the problem persists,

search the problem reporting databases to

find a correction for the problem. If none

exists, contact the IBM Service Support

Center.

IMS Connect Post Codes

166 IMS Connect Guide and Reference

|

|
|
|
|

||

||

||
|

||
|
|
|

||
|
|
|

||
|
|
|
|
|
|
|

||
|
|
|
|
|
|

Table 59. XML Adapter Error Codes (continued)

Decimal Value in XASM RC Description

120 The XML adapter failed to invoke the XML

Converter Metadata Service. This is an

internal error. If the problem persists, search

the problem reporting databases to find a

correction for the problem. If none exists,

contact the IBM Service Support Center.

125 The XML adapter failed to convert

HWSB0105E message to the outbound code

page. The conversion failure is a secondary

failure; check that z/OS support for Unicode

Conversion Services is setup to support

conversions from EBCDIC to UTF-8 and vice

versa.

129 The XML adapter failed to convert

HWSB0110E message to the outbound code

page. The conversion failure is a secondary

failure; check that z/OS support for Unicode

Conversion Services is setup to support

conversions from EBCDIC to UTF-8 and vice

versa.

133 The XML adapter failed to convert the XML

Converter error message to the outbound

code page. The conversion failure is a

secondary failure; check that z/OS support

for Unicode Conversion Services is setup to

support conversions from EBCDIC to UTF-8

and vice versa.

137 The XML adapter failed to convert

HWSB0115E message to the outbound code

page. The conversion failure is a secondary

failure; check that z/OS support for Unicode

Conversion Services is setup to support

conversions from EBCDIC to UTF-8 and vice

versa.

141 The XML adapter failed to convert the

output open and close tags to the outbound

code page. Check that z/OS support for

Unicode Conversion Services is setup to

support conversions from EBCDIC to UTF-8

and vice versa.

208 The XML adapter did not find the specified

XML Converter. Check that the XML

Converter is compiled and linked to the

correct dataset.

212 The XML adapter failed to load the specified

XML Converter. Check that the XML

Converter is compiled and linked to the

correct dataset.

IMS Connect Post Codes

Chapter 13. IMS Connect Return and Reason Codes 167

|

||

||
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|

||
|
|
|

Table 59. XML Adapter Error Codes (continued)

Decimal Value in XASM RC Description

216 The XML adapter failed to load the XML

Converter Metadata Service. Check that the

XML Converter is linked using its name and

has an alias where the last character of the

name is replaced by the letter “X”. For

example, if the XML Converter name is

XMLCNVD, then link the XML converter

with entry name of XMLCNVD and alias of

XMLCNVX.

218 The PreInit table is full. The XML adapter

failed to delete an entry from the table. This

is an internal error. If the problem persists,

search the problem reporting databases to

find a correction for the problem. If none

exists, contact the IBM Service Support

Center.

220 The XML adapter failed to invoke the XML

Converter Metadata Service. This is an

internal error. If the problem persists, search

the problem reporting databases to find a

correction for the problem. If none exists,

contact the IBM Service Support Center.

225 The XML adapter failed to convert

HWSB0205E to the outbound code page. The

conversion failure is a secondary failure;

check that z/OS support for Unicode

Conversion Services is setup to support

conversions from EBCDIC to UTF-8 and vice

versa.

229 The XML adapter failed to convert

HWSB0210E message to the outbound code

page. The conversion failure is a secondary

failure; check that z/OS support for Unicode

Conversion Services is setup to support

conversions from EBCDIC to UTF-8 and vice

versa.

233 The XML adapter failed to convert an XML

Converter error message to the outbound

code page. Check that z/OS support for

Unicode Conversion Services is setup to

support conversions from EBCDIC to UTF-8

and vice versa.

237 The XML adapter failed to convert an IMS

DFS message to the outbound code page.

Check that z/OS support for Unicode

Conversion Services is setup to support

conversions from EBCDIC to UTF-8 and vice

versa.

241 The XML adapter failed to convert the

output open and close tags to the outbound

code page. Check that z/OS support for

Unicode Conversion Services is setup to

support conversions from EBCDIC to UTF-8

and vice versa.

IMS Connect Post Codes

168 IMS Connect Guide and Reference

|

||

||
|
|
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|

||
|
|
|
|
|
|

Part 4. Appendixes

© Copyright IBM Corp. 2000, 2007 169

|

170 IMS Connect Guide and Reference

Appendix A. Recorder Log Record Mapping

This appendix illustrates the recorder log record mapping and contains Diagnosis,

Modification, or Tuning Information.

**

* COMMON SECTION 32_BYTES

**

USTAT_NEXT DS F NEXT POINTER

USTAT_EYE DS CL4’ICON’ EYECATCHER

USTAT_CALLID DS CL2 CALLER ID

* CHARS "RC" = RECEIVE

* CHARS "SN" = SEND

* CHARS "ER" = READ ERROR

* CHARS "TO" = TIMEOUT EVENT

USTAT_SMFHDR DS 0C SMF HEADER

SMFITOCLEN DS CL2 SMF LENGTH

SMFITOCSEG DS CL2 INTERNAL WORK

SMFITOCFLG DS X INTERNAL FLAG

SMFITOCRTY DS X RECORD TYPE

SMFITOCTME DS CL4 TIME OF TRACE

SMFITOCDTE DS CL4 SEQUENCE NUMBER

SMFITOCSID DS CL4 RESERVED

 DS CL4 RESERVED

**

* UOW PROGRESSION TIME STAMP SECTION

**

SMFITOCCID DS CL8 CLIENT NAME

USTAT_TSMREC DS D TIME HWSW MSG RECEIVED

USTAT_TSMNQ DS D TIME HWSW MSG ENQUEUED

USTAT_TDMDQ DS D TIME 1ST DST MSG DEQUEUED

USTAT_TCLRDQ DS D TIME DST CLR DENQUEUED

USTAT_TERROR DS D TIME ERROR OCCURRED

USTAT_NMSGX DS H NUMBER OF MSGS TRANSMITTED

USTAT_NMSGR DS H NUMBER OF MSGS RECEIVED

 DS CL8 RESERVED

USTAT_SMFITOCL EQU *-USTAT_SMFHDR LENGTH OF SMF

**

* INPUT MSG

**

USTAT_IN_EYE DS CL4’*IPB’ EYECATCHER

* *IPB IS THE INPUT TO THE EXIT

* FOR EITHER RECEIVE OR SEND

* USTAT_CALLID = RC - RECEIVE

* SN - SEND

* ER - READ ERROR

* AR - ADAPTER RECEIVE

* AX - ADAPTER SEND

* AE - ADAPTER ERROR

* for ICONRC and *IPB

* (USTAT_CALLID = "RC")

*

* THE LOGGED DATA STARTING AT OFFSET X’60’ IS AS FOLLOWS:

* (INPUT TO EXIT FROM CLIENT)

* llll

* IRM

* llzzTRANCODEDATA

* X’00040000’

**

* for ICONSN and *IPB

* (USTAT_CALLID = "SN")

*

© Copyright IBM Corp. 2000, 2007 171

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* THE LOGGED DATA STARTING AT OFFSET X’60’ IS AS FOLLOWS:

* (INPUT TO EXIT FROM IMS APPLICATION)

* OTMA CONTROL HEADER followed by

* OTMA STATE DATA HEADER (if present) followed by

* OTMA SECURITY DATA HEADER (if present) followed by

* OTMA USER DATA HEADER (if present) followed by

* DATA TO BE SENT

* llzzTRANCODEDATA

*

 USTAT_MSG_I DS CL202 MSG

**

* for ICONAR and *IPB

* (USTAT_CALLID = "AR")

*

* THE LOGGED DATA STARTING AT OFFSET X’60’ IS AS FOLLOWS:

* (INPUT TO EXIT FROM CLIENT)

* llll

* IRM

* XML

*

**

* for ICONAX and *IPB

* (USTAT_CALLID = "AX")

*

* THE LOGGED DATA STARTING AT OFFSET X’60’ IS AS FOLLOWS:

* (INPUT TO EXIT FROM OUTPUT FROM EXIT OF APPLICATION OUTPUT DATA)

* llll

* llzzDATA

* CSM

*

USTAT_MSG_I DS CL202 MSG

**

* OUTPUT MSG

**

USTAT_OUT_EYE DS CL4’*OPB’ EYECATCHER

* *OPB IS THE OUTPUT FROM THE EXIT

* FOR EITHER RECEIVE OR SEND

* USTAT_CALLID = RC - RECEIVE

* SN - SEND

* ER - READ ERROR

* AR - ADAPTER RECEIVE

* AX - ADAPTER SEND

* AE - ADAPTER ERROR

* for ICONRC and *OPB

* (USTAT_CALLID = "RC")

*

* THE LOGGED DATA STARTING AT OFFSET X’300’ IS AS FOLLOWS:

* (OUTPUT FROM USER EXIT OF CLIENT INPUT DATA)

* OTMA CONTROL HEADER followed by

* OTMA STATE DATA HEADER (if present) followed by

* OTMA SECURITY DATA HEADER (if present) followed by

* OTMA USER DATA HEADER (if present) followed by

* APPLICATION DATA TO BE SENT

* llzzTRANCODEDATA

**

* FOR ICONSN AND *OPB

* (USTAT_CALLID = "SN")

*

* THE LOGGED DATA STARTING AT OFFSET X’300’ IS AS FOLLOWS:

* (OUTPUT FROM USER EXIT OF APPLICATION OUTPUT DATA)

* OTMA CONTROL HEADER followed by

Recorder Log Mapping

172 IMS Connect Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* OTMA STATE DATA HEADER (if present) followed by

* OTMA SECURITY DATA HEADER (if present) followed by

* OTMA USER DATA HEADER (if present) followed by

* DATA TO BE SENT (ONE OF THE FOLLOWING STRUCTURES

* ’RMM’LLZZDATA.................’CSM’

* LLZZDATA.................’CSM’

* ’RSM’

*

* RMM is the *REQMOD* structure

* CSM is the *CSMOKY* structure

* RSM is the *REQSTS* structure

*

**

* FOR ICONAR AND *OPB

* (USTAT_CALLID = "AR")

*

* THE LOGGED DATA STARTING AT OFFSET X’300’ IS AS FOLLOWS:

* (OUTPUT FROM USER EXIT OF CLIENT INPUT DATA)

* llll

* IRM

* llzzTRANCODEDATA

* X’00040000’

*

**

* FOR ICONAX AND *OPB

* (USTAT_CALLID = "AX")

*

* THE LOGGED DATA STARTING AT OFFSET X’300’ IS AS FOLLOWS:

* (OUTPUT FROM USER EXIT OF APPLICATION OUTPUT DATA)

* llll

* XML

* CSM

*

USTAT_END_EYE DS CL4’*END’ EYECATCHER

Recorder Log Mapping

Appendix A. Recorder Log Record Mapping 173

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Recorder Log Mapping

174 IMS Connect Guide and Reference

Appendix B. OTMA Headers

The following tables, (Table 60, Table 61 on page 179, Table 65 on page 183, Table 66

on page 184, Table 67 on page 184, Table 68 on page 185, and Table 69 on page 185)

lists the fields of the OTMA headers, and the requirements for each field as they

should be set or integrated by the user exits. The notes for each table are defined

at the end of this appendix under Notes, which follows Table 69 on page 185.

 Table 60. HWS0MCTL DSECT - OTMA Control Header

(Control Data Common Section for All Messages)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMCTLALV 1 0 ARCHITECTURE LEVEL

Set to X’01’ arch. level 1.

Set for all messages.

1

OMCTLMGT 1 1 OMCTLDTA X’80’ MESSAGE TYPE=Data

Set for conversational

transactions but not on first

input.

If EXPREA FLAG1 is set to

EXPREA_ CONVERS then

set OMCTLMGT to

OMCTLDTA.

EXPREA FLAG1 is not set to

EXPREA_ CONVERS on the

first input for conversation.

1

OMCTLTXN X’40’ MESSAGE TYPE=Transaction

Set for first transaction input.

That is, first input for

conversation or

nonconversation,

EXPREA_FLAG1 is not set to

EXPREA_CONVERS.

1

OMCTLRSP X’20’ MESSAGE TYPE=Response

Set for:

v ACK response to msg sent

to client

v NAK response to msg sent

to client

Required for:

v Commit Mode 0 (synch

level=CONFIRM)

v Commit Mode 1 (synch

level=CONFIRM)

1

OMCTLCMD X’10’ MESSAGE TYPE-Command

Set for - RESUME TPIPE

1

© Copyright IBM Corp. 2000, 2007 175

Table 60. HWS0MCTL DSECT - OTMA Control Header

(Control Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMCTLCMT X’08’ MESSAGE TYPE = Commit

Confirmation

Set for SEND ONLY or

DEALLOCATE.

SEND ONLY or

DEALLOCATE is indicated

in IRM from client.

1

OMCTLRSI 1 2 OMCTLACK X’80’ RESPONSE INDICATOR

RESPONSE = ACK

Set for ACK. ACK is

indicated in IRM.

OMCTLNAK X’40’ RESPONSE = NAK

Set for NAK. NAK is

indicated in IRM.

1

OMCTLRRQ X’20’ RESPONSE = Response

requested

If set, then conversational

trans and the

IMSEA_RSNCODE must be

set to 96 (X’60’) to signal

client application that

conversation continues.

1

OMCTLERQ X’10’ RESPONSE=Extended

response requested

NEITHER TESTED NOR SET

BY EXIT.

4

OMCTLCCI 1 3 OMCTLCTD X’80’ COMMIT CONFIRMATION

INDICATOR

Confirm=Committed

If set, then the IMS

application has terminated

the conversation, and the

IMSEA_RSNCODE must be

set to 97 (X’61’) to signal

client application that the

IMS application terminated

successfully.

OMCTLABT X’40’ Confirm=Aborted NEITHER

TESTED NOR SET BY EXIT.

4

OMCTLYP 1 4 OMCTLBID X’04’ COMMAND TYPE

COMMAND=Client Bid

NEITHER TESTED NOR SET

BY EXIT.

4

OTMA Headers

176 IMS Connect Guide and Reference

Table 60. HWS0MCTL DSECT - OTMA Control Header

(Control Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMCTLAVL X’08’ COMMAND=Server

Available

NEITHER TESTED NOR SET

BY EXIT.

4

OMCLTRSN X’0C’ Command=Resynch

NEITHER TESTED NOR SET

BY EXIT.

4

X’10’ Reserved for future use.

Neither tested nor set by

exit.

4

OMCTLSPA X’14’ Command=Suspend I/P for

all tpipes.

Neither tested nor set by

exit.

4

OMCTLRSA X’18’ Command=Resume I/P for

all tpipes.

Neither tested nor set by

exit.

4

OMCTLSPN X’1C’ Command=Suspend I/P for

named tpipe.

Neither tested nor set by

exit.

4

OMCTLRSM X’20’ Command=Resume I/P for

named tpipe.

Neither tested nor set by

exit.

4

OMCTLRTP X’24’ Command=Resume O/P for

named tpipe without

options.

Set for RESUME TPIPE

without options.

1

OMCTLRID X’28’ Command=Resume single

tpipe with options.

Set for RESUME TPIPE with

options.

1

OMCTLPFG 1 5 OMCTLLPG X’80’ PROCESSING FLAG

Load Program

NEITHER TESTED NOR SET

BY EXIT.

4

OMCTLSYP X’40’ Synchronized tpipe.

NEITHER TESTED NOR SET

BY EXIT.

4

OTMA Headers

Appendix B. OTMA Headers 177

Table 60. HWS0MCTL DSECT - OTMA Control Header

(Control Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMCTLASY X’20’ Asynchronous/ unsolicited

queued messages.

NEITHER TESTED NOR SET

BY EXIT.

4

OMCTLERR X'10' There is an error message

with the NAK. NEITHER

TESTED NOR SET BY EXIT.

4

OMCTLQUE X'08' Asynchronous message is in

IMS Hold Queue.

If set, set CSM_FLG1 to

CSM_AMSG if sending CSM,

orset RSMFLG1 to

RSM_AMSG if sending RSM.

4

OMCTLOME X'01' SCI not present error

message.

OMCTLTNM 8 6 Tpipe name. NEITHER

TESTED NOR SET BY EXIT.

4

OMCTLCHN 1 E OMCTLFIC X’80’ CHAIN STATE FLAG

First in chain. Set for first

message segment in chain.

1

OMCTLMIC X’40’ Middle in chain. Set for not

first and/or not last message

segment in chain.

1

OMCTLLIC X’20’ Last in chain. Set for last

message segment in chain.

1

OMCTLCAN X’10’ Cancel this message. Neither

tested nor set by exit.

4

OMCTLPFL 1 F OMCTLSTD X’80’ PREFIX FLAG

State Data is present. Set if

State Data Header present in

OTMA Headers being built.

1

OMCTLSEC X’40’ Security data is present. Set

if Security Data Header

present in OTMA Headers

being built.

1

OMCTLUSR X’20’ User data is present. Set if

User Data Header present in

OTMA Headers being built.

1

OMCTLAPP X’10’ Application data is present.

Set if Application Data

Header present in OTMA

Headers being built.

1

OMCTLSSN 4 10 SEND SEQUENCE

NUMBER. NEITHER

TESTED NOR SET BY EXIT.

4

OTMA Headers

178 IMS Connect Guide and Reference

Table 60. HWS0MCTL DSECT - OTMA Control Header

(Control Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMCTLSNS 4 14 SENSE CODE. See

OMCTLSNC and

OMCTLRSC, which follow.

ORG OMCTLSNS

OMCTLSNC 2 14 SENSE CODE

If nonzero value, then build

a NAK RSM to send to the

client application, pass the

sense code in the RSM as the

reason code, and set the

return code to X’0C’.

1

OMCTLRSC 2 16 REASON CODE

NEITHER TESTED NOR SET

BY EXIT.

4

OMCTLRSQ 4 18 RECOVERABLE MESSAGE

SEQUENCE NUMBER

NEITHER TESTED NOR SET

BY EXIT.

4

OMCTLSEQ 2 1C SEGMENT SEQUENCE

NUMBER

Set to 1 in first OTMA

Control Header and count

maintained in user work

area.

Increment by 1 for each

subsequent OTMA Control

Header within a single

message being sent to IMS.

1

1 1E RESERVED. 3

1 1F RESERVED. 3

 Table 61. HWS0MHDR DSECT - OTMA State Data Header

(State Data Common Section for Server Available and Client Bid Command Format)

Field Len.

Hex

Offset Field Value

Description and

Settings Note

OMHDRLEN 2 0 STATE DATA LENGTH

Set to State Data length.

1

OMHDRORG 2 State data for ’Server Available’ and ’Client Bid’ commands.

OMHDRONM 16 2 MEMBER NAME OF

ORIGINATING

SERVER. NEITHER

TESTED NOR SET BY

EXIT.

4

OTMA Headers

Appendix B. OTMA Headers 179

Table 61. HWS0MHDR DSECT - OTMA State Data Header

(State Data Common Section for Server Available and Client Bid Command Format) (continued)

Field Len.

Hex

Offset Field Value

Description and

Settings Note

OMHDROMT 8 12 MEMBER TOKEN OF

COMMAND

ORIGINATOR.

NEITHER TESTED

NOR SET BY EXIT.

4

OMHDRDMT 8 1A MEMBER TOKEN OF

COMMAND

DESTINATION.

NEITHER TESTED

NOR SET BY EXIT.

4

OMHDRUEN 8 22 UNRESOLVED

DESTINATION EXIT

NAME. NEITHER

TESTED NOR SET BY

EXIT.

4

OMHDRMBS 2 2A XCF TRANSMISSION

MAX BLOCKSIZE.

NEITHER TESTED

NOR SET BY EXIT.

4

OMHDRRQE 1 2C OMHDRCMQ X’80’ CREATE HOLD

MESSAGE QUEUE.

NEITHER TESTED OR

SET BY EXIT.

4

1 2D RESERVED. NEITHER

TESTED OR SET BY

EXIT.

3

OMHDRUAV 4 2E SAF USER ID TABLE

AGING VALUE.

NEITHER TESTED OR

SET BY EXIT.

4

OMHDRHTS 4 32 MESSAGE

RE-ASSEMBLY HASH

TABLE SIZE. NEITHER

TESTED OR SET BY

EXIT.

4

2 ORG OMHDRORG

 Table 62. HWS0MHDR DSECT - OTMA State Data Header (State Data Common Section for resume output for

single named TPIPE for the asynchronous option of NO OPTION selection)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMHDCRSM_COUNT 2 2 NUMBER OF TPIPES IN

THE ARRAY. Set to

number of tpipes to

retrieve output from a

RESUME TPIPE request.

Only valid value is one (1).

1

OTMA Headers

180 IMS Connect Guide and Reference

Table 62. HWS0MHDR DSECT - OTMA State Data Header (State Data Common Section for resume output for

single named TPIPE for the asynchronous option of NO OPTION selection) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMHDCRSM_TPIPEN n 4 TPIPE ARRAY. Set to the

name of the tpipe to

retrieve output from a

RESUME TPIPE request.

Only one name is valid.

1

2 ORG OMHDRORG

 Table 63. HWS0MHDR DSECT - OTMA State Data Header (State Data Common Section for resume output for

single named TPIPE for options of NOAUTO, SINGLE, SINGLE with WAIT, and AUTO)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMHDRRHQ 1 2 OPTIONS

OMHDRRHQ_NOAUTO X’80’ Exhaust all current

messages in IMS queue,

then hold any new

message in IMS queue,

until next RESUME

TPIPE. Active option in

HWSIMSO0, HWSIMSO1,

HWSSMPL0, HWSSMPL1

1

OMHDRRHQ_AUTO X’40’ Exhaust all current

messages in IMS queue,

and wait for next

message. This option

requires that IRM_TIMER

be set to X’E9’ on ACK to

IMS Connect from client,

to wait for next output

from IMS Connect.

1

OMHDRRQ_ONE X’20 Send only one message,

and require a new

RESUME TPIPE Receive

sequence to get any

subsequent messages.

1

1 3 Reserved for IMS

Connect.

OMHDCRHQ_TPIPEN 8 4 Tpipe name. Set to the

name of the tpipe to

retrieve output from a

RESUME TPIPE request.

Only one name is valid.

1

2 ORG OMHDRORG

 Table 64. HWS0MHDR DSECT - OTMA State Data Header (State Data Common Section for transaction messages)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMHDRIST 1 2 OMHDRCNV X'80' IMS STATE FLAG

Conversational State.

2

OTMA Headers

Appendix B. OTMA Headers 181

Table 64. HWS0MHDR DSECT - OTMA State Data Header (State Data Common Section for transaction

messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMHDRRSP X'40' Response Mode

NEITHER TESTED NOR SET

BY EXIT.

4

OMHDRMHQ X'20' Message from Hold Queue.

OMHDRSYN 1 3 X'80' SYNCHRONIZATION

FLAG. Reserved.

3

OMHDRCM0 X'40' Commit Mode 0

Set if default for exit or the

IRM requests Commit Mode

0, field IRM_F2 is set to

″IRM_CMODE0.″

1

OMHDRCM1 X'20' Commit Mode 1

Set if default for exit or the

IRM requests Commit Mode

1, field IRM_F2 is set to

″IRM_CMODE1.″

1

OMHDRNTX X'10' Notify of transfer.

NEITHER TESTED NOR SET

BY EXIT.

4

OMHDRSLV 1 4 OMHDRSL0 X'00' SYNCH LEVEL

Synchlevel=0 (None)

Set if default for exit or the

IRM requests synch level

none, field IRM_F3 is not set

to ″IRM_CONFIRM.″

Synchlevel=0 is only valid

for Commit Mode 1.

1

OMHDRSL1 X'01' Synchlevel=1 (Confirm)

Set if default for exit or the

IRM requests synch level

confirm, field IRM_F3 is set

to ″IRM_CONFIRM.″

Synchlevel=1 is valid for

Commit Modes 0 and 1.

1

OMHDRSL2 X'02' Synchlevel=2 (Syncpt)

NEITHER TESTED NOR SET

BY EXIT.

OMHDRCFL 1 5 OMHDRSOM X'80' Set for SENDONLY.

SENDONLY is indicated in

the IRM from the client.

1

OMHDRPND X'10' Set for PURGE NOT

DELIVERABLE. SENDONLY

and PURGE NOT

DELIVERABLE are mutually

exclusive.

1

OTMA Headers

182 IMS Connect Guide and Reference

|

Table 64. HWS0MHDR DSECT - OTMA State Data Header (State Data Common Section for transaction

messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMHDRMAP 8 6 MAP NAME

If client application

requested that the

MODname be returned, then

the exit must build an RRM

in front of the data being

returned to the client. The

MODname (OMHDRMAP)

would be moved to the RRM

to field RRM_MODNAME

by the exit.

1

OMHDRTOK 16 E SERVER TOKEN. NEITHER

TESTED NOR SET BY EXIT.

4

OMHDRCOR 16 1E CORRELATOR. NEITHER

TESTED NOR SET BY EXIT.

4

OMHDRCID 16 2E CONTEXT ID. NEITHER

TESTED NOR SET BY EXIT.

4

OMHDRLTM 8 3E OVERRIDE LTERM NAME.

Set from IRM LTERM field

″IRM_LTERM.″

1

OMHDRLIU 2 46 LENGTH OF IMS HEADER

USER DATA. Set to the user

header data length that

follows. The length of this

field is not included in the

total length.

5

OMHDRIUD n 48 IMS HEADER USER DATA.

Variable length, set by the

user.

5

 Table 65. HWS0MSEC DSECT - OTMA Security Data Header

(Security Data Common Section for All Messages)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMSECLEN 2 0 SECURITY DATA LENGTH

OMSECFLG 1 2 OMSECNON C’N’ SECURITY FLAG

No RACF checking.

Set to ’N’ if no OTMA

RACF calls are to be made.

1

OMSECCHK C’C’ Check for Tran and Cmd.

NEITHER TESTED NOR

SET BY EXIT.

4

OMSECFUL C’F’ Check for Tran, Cmd, and

MPR

Set to ’F’ is OTMA is to

issue RACF call.

1

OTMA Headers

Appendix B. OTMA Headers 183

Table 65. HWS0MSEC DSECT - OTMA Security Data Header

(Security Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMSECFLN 1 3 LENGTH OF FOLLOWING

FIELDS

Set to length of USERID

and GROUPID section.

v Set to X’0A’ if only

USERID.

v Set to X’14’ if USERID

and GROUPID.

v Set to X’00’ if neither

USERID or GROUPID

present.

1

 Table 66. HWSECUDS DSECT - OTMA USERID Definition

(Security Data USERID Section for All Messages)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMSECULN 1 0 LENGTH OF USERID

FIELDS

Set to length of USERID

fields. The length includes

this field. Set to X’09’ if

USERID present.

1

OMSECUTY 1 1 OMSECUXX X’02’ FIELD TYPE

USERID type.

Set to X’02’ to identify

USERID present.

1

OMSECUID 8 2 USERID

Set to USERID from IRM

field IRM_RACF_USERID.

1

 Table 67. HWSECGDS DSECT - OTMA GROUPID Definition

(Security Data GROUPID Section for All Messages)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMSECGLN 1 0 LENGTH OF GROUPID

FIELDS

Set to length of GROUPID

fields. The length includes

this field. Set to X’09’ if

GROUPID present.

1

OMSECGTY 1 1 OMSECGXX X’02’ FIELD TYPE

GROUPID type.

Set to X’03’ to identify

GROUPID present.

1

OTMA Headers

184 IMS Connect Guide and Reference

Table 67. HWSECGDS DSECT - OTMA GROUPID Definition

(Security Data GROUPID Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMSECGRP 8 2 RACF GROUPID

Set to GROUPID from IRM

field IRM_RACF_GROUPID

or from default GROUPID

from IMS Connect

configuration file.

1

 Table 68. HWSECFDS DSECT - OTMA RACF UTOKEN Definition

(Security Data UTOKEN Section for All Messages)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMSECRLN 1 0 LENGTH OF UTOKEN

FIELDS

Set to length of UTOKEN

fields. The length includes

this field. Set to X’51’ if

user security exit issued

RACF call.

1

OMSECRTY 1 1 OMSECRXX X’02’ FIELD TYPE

UTOKEN type.

Set to X’00’ to identify

UTOKEN present.

1

OMSECPRF 80 2 UTOKEN

Set to UTOKEN from user

security exit.

1

 Table 69. HWSOMUSR DSECT - User Data Header

(User Data Common Section for All Messages)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMUSRLN 2 0 USER DATA LENGTH

Set to length of User Data

Header.

1

OMUSR_ARCLEV 1 2 OMUSR_AL00 X'00' ARCHITECTURAL LEVEL

Base level.

1

OMUSR_AL01 X'01' IMS Connector for Java timer

support level.

1

OMUSR_AL02 X'02' Client reroute level. 1

1 3 Reserved.

OMUSR_DESTID 8 4 DESTINATION ID

Set to destination ID

(datastore) from IRM field

IRM_IMSDESTID.

1

OTMA Headers

Appendix B. OTMA Headers 185

|

|

|

|

Table 69. HWSOMUSR DSECT - User Data Header

(User Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMUSR_ORIGID 8 C ORIGIN ID. Neither tested

nor set by exit.

4

OMUSR_PORTID 8 14 PORTID.

Neither tested nor set by

exit.

4

OMUSR_LTOKEN 8 1C LOGON TOKEN.

Neither tested nor set by

exit.

4

OMUSR_RETCODE 4 24 COMMUNICATION

RETURN CODE.

Neither tested nor set by

exit.

4

OMUSR_RESCODE 8 28 COMMUNICATION

REASON CODE.

Neither tested nor set by

exit.

4

OMUSR_RTOKEN 4 30 RESPONSE TOKEN -

A(SVT)

COMMUNICATION

RETURN CODE.

Neither tested nor set by

exit.

4

OMUSR_PASSTICK 8 34 RACFPASSWORD/

PASSTICKET.

Set to password from IRM

field IRM_RACF_PW.

This field must be cleared

before passing message back

to IMS Connect.

1

OMUSR_FLAG1 1 3C OMUSER_TRAN X’00’ FLAG 1

Transaction Socket. Set if

transaction socket specified

in IRM field IRM_SOCT has

been set to

IRM_SOCT_TRAN.

4

OMUSER_PSOCKET X'10' Persistent Socket

Set if persistent socket

specified in IRM field

IRM_SOCT has been set to

IRM_SOCT_PER.

4

OMUSER_NPSOCKET X'40' Non-persistent Socket

NEITHER TESTED NOR SET

BY EXIT.

4

OMUSR_REROUT X'01' Client reroute request. 1

OTMA Headers

186 IMS Connect Guide and Reference

|

Table 69. HWSOMUSR DSECT - User Data Header

(User Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMUSR_FLAG2 1 3D OMUSR_PWDTEXT X’01’ FLAG 2

PASSTCKT field is text

password.

NEITHER TESTED NOR SET

BY EXIT.

4

OMUSR_PWDBIN X'02' PASSTCKT field is binary

password.

NEITHER TESTED NOR SET

BY EXIT.

4

OMUSR_TRSTUSR X'80' Trusted user can be set by

exit.

OMUSR_FLAG3 1 3E OMUSR_HDRCM0 X’40’ ORIGINAL

SYNCHRONIZATION.

Commit Mode 0.

NEITHER TESTED NOR SET

BY EXIT.

4

OMUSR_HDRCM1 X'20' Commit Mode 1 (Send

Commit)

NEITHER TESTED NOR SET

BY EXIT.

4

OMUSR_TIMER 1 3F OMUSR_ZERO X’E9’ - X’nn’

Note: See Table 40 on page

112 for a range of values.

Wait for Read following

ACK or RECEIVE for

RESUME TPIPE.

See “Time-out intervals on

input messages” on page 110

for this value.

1

OMUSR_USTAT 4 40 USTAT ADDRESS. NEITHER

TESTED NOR SET BY EXIT.

4

OMUSR_APPL_NM 8 44 PassTicket APPLname set to

blanks or IRM value.

1

OMUSR_RESV3 4 4C RESERVED FOR IMS

CONNECT USAGE.

NEITHER TESTED NOR SET

BY EXIT.

3

OMUSR_RESV4 4 50 RESERVED FOR IMS

CONNECT USAGE.

NEITHER TESTED NOR SET

BY EXIT.

3

OMUSR_RESV5 4 54 RESERVED FOR IMS

CONNECT USAGE.

NEITHER TESTED NOR SET

BY EXIT.

3

OTMA Headers

Appendix B. OTMA Headers 187

Table 69. HWSOMUSR DSECT - User Data Header

(User Data Common Section for All Messages) (continued)

Field Len.

Hex

Offset Field Value Description and Settings Note

OMUSR_RESV6 4 58 RESERVED FOR IMS

CONNECT USAGE.

NEITHER TESTED NOR SET

BY EXIT.

3

OMUSR_REROUT_NM 8 5C Client Reroute name. Set to

reroute name specified in

IRM_REROUT_NM. This

field occupies the same offset

as the OMUSR_RT_ALTCID

field.

1

OMUSR_RT_ALTCID 8 5C Alternate clientid. Tested by

exit. Also requires

OMUSR_ARCLEV to be set

to OMUSR_AL02. This field

occupies the same offset as

the OMUSR_REROUT_NM

field.

6

OMUSRDTA n 5C User-defined area. 5

v Note 1: Set by READ routine of user-written exit.

v Note 2: Set by IMS Connect.

v Note 3: Reserved fields.

v Note 4: Set by IMS Connect and not analyzed by user exit.

v Note 5: User-defined area.

v Note 6: Analyzed by user exit.

OTMA Headers

188 IMS Connect Guide and Reference

||

||

Appendix C. HWSSMPL0, HWSSMPL1, HWSIMSO0, and

HWSIMSO1 Security Actions

This appendix describes the security actions that the sample user message exits

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 take in different

circumstances.

Table 70, Table 71, and Table 72 define the action that HWSSMPL0, HWSSMPL1,

HWSIMSO0, and HWSIMSO1 take when they do not call the security exit

(IMSLSECX).

 Table 70. USERID Results If Security Exit Not Called

USERID field present

in IRM

IRM USERID field

blank/null

RACF parms results passed

in OTMA Security Header

USERID Yes Yes Default RACFID

USERID Yes No IRM USERID

USERID No N/A Default RACFID

 Table 71. GROUPID Results If Security Exit Not Called

GROUPID field

present in IRM

IRM USERID field

blank/null

RACF parms results passed

in OTMA Security Header

GROUPID Yes Yes Blanks/nulls

GROUPID Yes No IRM GROUPID

GROUPID No N/A Blanks/nulls

 Table 72. Password Results If Security Exit Not Called

Password field present

in IRM

IRM PASSWORD field

blank/null

RACF parms results

passed in OTMA Security

Header

PASSWORD Yes Yes Blanks/nulls

PASSWORD Yes No IRM PASSWORD

PASSWORD No N/A Blanks/nulls

Table 73, Table 74 on page 190, and Table 75 on page 190 define the action that

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 take when they call the

security exit (IMSLSECX).

 Table 73. USERID Results If Security Exit Called; Returns Blank or Non-blank USERID

USERID field

present in

IRM

IRM USERID

field

blank/null

Security exit

return

USERID

RACF parms results passed

in OTMA Security Header

USERID Yes Yes No Default RACF USERID

USERID Yes Yes Yes Security exit returned

USERID

USERID Yes No No USERID passed in IRM

© Copyright IBM Corp. 2000, 2007 189

Table 73. USERID Results If Security Exit Called; Returns Blank or Non-blank

USERID (continued)

USERID field

present in

IRM

IRM USERID

field

blank/null

Security exit

return

USERID

RACF parms results passed

in OTMA Security Header

USERID Yes No Yes Security exit returned

USERID

USERID No N/A No Default RACF USERID

USERID No N/A Yes Security exit returned

USERID

 Table 74. GROUPID Results If Security Exit Called; Returns Non-blank USERID

GROUPID

field present

in IRM

IRM

GROUPID

field

blank/null

Security exit

return

GROUPID

RACF parms results passed

in OTMA Security Header

GROUPID Yes Yes No Blank GROUPID

GROUPID Yes Yes Yes Security exit returned

GROUPID

GROUPID Yes No No Blank GROUPID

GROUPID Yes No Yes Security exit returned

GROUPID

GROUPID No N/A No Blank GROUPID

GROUPID No N/A Yes Security exit returned

GROUPID

 Table 75. GROUPID Results If Security Exit Called; Returns Blank USERID

GROUPID

field present

in IRM

IRM

GROUPID

field

blank/null

Security exit

return

GROUPID

RACF parms results passed

in OTMA Security Header

GROUPID Yes Yes No Blank GROUPID

GROUPID Yes Yes Yes Blank GROUPID

GROUPID Yes No No IRM GROUPID

GROUPID Yes No Yes IRM GROUPID

GROUPID No N/A No Blanks

GROUPID No N/A Yes Blanks

Important: If the security exit returns a blank USERID, then the GROUPID that is

returned by the exit is not used.

Table 76 on page 191 defines the action that HWSSMPL0, HWSSMPL1,

HWSIMSO0, and HWSIMSO1 take regardless of whether the security exit

(IMSLSECX) is called. The password is based on the IRM, not on the security exit.

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions

190 IMS Connect Guide and Reference

Table 76. Password Results Regardless of Whether Security Exit Called

PASSWORD

field present

in IRM

PASSWORD

field

blank/null

Security exit

return

PASSWORD

RACF parms results passed

in OTMA Security Header

PASSWORD Yes Yes N/A Blanks/nulls

PASSWORD Yes No N/A IRM PASSWORD

PASSWORD No N/A N/A Blanks/nulls

IMS Connect decides what error actions to take depending on the RACF parameter

setting in the IMS Connect configuration file, as well as the specific circumstances

that cause the error.

v Table 77 describes the error actions that IMS Connect takes if RACF=Y, based on

required RACROUTE call parameters.

v Table 78 on page 192 describes the error actions that IMS Connect takes if

RACF=Y, either based on OTMA header data, or should the RACROUTE call

fail.

v Table 79 on page 193 describes the error actions that IMS Connect takes if

RACF=N, based on required RACROUTE call parameters.

v Table 80 on page 194 describes the error actions that IMS Connect takes if

RACF=N, either based on OTMA header data, or should the RACROUTE call

fail.

 Table 77. IMS Connect Error Actions Taken Based on RACROUTE Call Parameters

(RACF=Y)

USERID PASSWORD GROUPID Action Taken

Non-blanks Non-blanks Non-blanks RACROUTE call issued

Non-blanks Blanks Blanks v Error message HWSP1503 issued

v Input rejected

v RACROUTE call not issued

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFNOPW’

v Password cleared in OTMA header

v * Security failed, no password *

Non-blanks Blanks Non-blanks v Error message HWSP1503 issued

v Input rejected

v RACROUTE call not issued

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFNOPW’

v Password cleared in OTMA header

v * Security failed, no password *

Blanks Non-blanks Blanks v Error message HWSP1503 issued

v Input rejected

v RACROUTE call not issued

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFNUID’

v Password cleared in OTMA header

v * Security failed, no password *

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions

Appendix C. HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions 191

Table 77. IMS Connect Error Actions Taken Based on RACROUTE Call Parameters

(RACF=Y) (continued)

USERID PASSWORD GROUPID Action Taken

Blanks Non-blanks Non-blanks v Error message HWSP1503 issued

v Input rejected

v RACROUTE call not issued

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFNUID’

v Password cleared in OTMA header

v * Security failed, no password *

Blanks Blanks Non-blanks v Error message HWSP1503 issued

v Input rejected

v RACROUTE call not issued

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFNPUI’

v Password cleared in OTMA header

v * Security failed, no password *

Blanks Blanks Blanks v Error message HWSP1503 issued

v Input rejected

v RACROUTE call not issued

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFNPUI’

v Password cleared in OTMA header

v * Security failed, no password *

Non-blanks Blanks Non-blanks v Error message HWSP1503 issued

v Input rejected

v RACROUTE call not issued

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFNOPW’

v Password cleared in OTMA header

v * Security failed, no password *

 Table 78. IMS Connect Error Actions Taken for RACROUTE Call Failure or OTMA Header

Data (RACF=Y)

RACROUTE Call Failure or

OTMA Header Data

Action Taken

No security header v Error message HWSP1503 issued

v Input rejected

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’NOSECHDR’

v Password cleared in OTMA header

v No RACF call made

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions

192 IMS Connect Guide and Reference

Table 78. IMS Connect Error Actions Taken for RACROUTE Call Failure or OTMA Header

Data (RACF=Y) (continued)

RACROUTE Call Failure or

OTMA Header Data

Action Taken

Security header < X’6A’ v Error message HWSP1503 issued

v Input rejected

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’INVSECHL’

v Password cleared in OTMA header

v No RACF call made

Conversation continued v No error message issued

v Input accepted

v Password cleared in OTMA header

v No RACF call made

Response message v No error message issued

v Input accepted

v Password cleared in OTMA header

v No RACF call made

UTOKEN present v No error message issued

v Input accepted

v Password cleared in OTMA header

v No RACF call made

RACROUTE call failed v Error message HWSP1500 issued

v Input rejected

v Set OMUSR_RETCODE=X’04’

v Set OMUSR_RESCODE=’SECFAIL’

v Password cleared in OTMA header

v RACF return/reason codes in HWSP1500 message

All others See Table 77 on page 191

 Table 79. IMS Connect Error Actions Taken Based on RACROUTE Call Parameters

(RACF=N)

USERID PASSWORD GROUPID Action Taken

Non-blanks Non-blanks Non-blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

Non-blanks Blanks Blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

Non-blanks Blanks Non-blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions

Appendix C. HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions 193

Table 79. IMS Connect Error Actions Taken Based on RACROUTE Call Parameters

(RACF=N) (continued)

USERID PASSWORD GROUPID Action Taken

Blanks Non-blanks Blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

Blanks Non-blanks Non-blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

Blanks Blanks Non-blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

Blanks Blanks Blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

Non-blanks Blanks Non-blanks v Password cleared

v Bypass RACROUTE call

v Pass these parms to OTMA

 Table 80. IMS Connect Error Actions Taken for RACROUTE Call Failure or OTMA Header

Data (RACF=N)

RACROUTE Call Failure or

OTMA Header Data

Action Taken

No security header v Password cleared

v Bypass RACROUTE call

v Pass OTMA headers and data to IMS OTMA

Security header < X’6A’ v Password cleared

v Bypass RACROUTE call

v Pass OTMA headers and data to IMS OTMA

Conversation continued v Password cleared

v Bypass RACROUTE call

v Pass OTMA headers and data to IMS OTMA

Response message v No error message issued

v Input accepted

v Password cleared in OTMA header

v No RACF call made

UTOKEN present v Password cleared

v Bypass RACROUTE call

v Pass OTMA headers and data to IMS OTMA

RACROUTE call failed v Password cleared

v Bypass RACROUTE call

v Pass OTMA headers and data to IMS OTMA

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions

194 IMS Connect Guide and Reference

Table 80. IMS Connect Error Actions Taken for RACROUTE Call Failure or OTMA Header

Data (RACF=N) (continued)

RACROUTE Call Failure or

OTMA Header Data

Action Taken

All others v Password cleared

v Bypass RACROUTE call

v Pass OTMA headers and data to IMS OTMA

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions

Appendix C. HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions 195

HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions

196 IMS Connect Guide and Reference

Appendix D. IMS Connect JCL

This appendix provides sample JCL examples to assist you when link-editing and

compiling these exits:

v HWSSMPL0

v HWSSMPL1

v HWSJAVA0

v HWSDRU0

v HWSUINIT

See “Customizing IMS Connect” on page 28 for more information about how to

customize these four exits.

In this appendix:

v “HWSSMPL0 Sample JCL”

v “HWSSMPL1 Sample JCL” on page 198

v “HWSJAVA0 Sample JCL” on page 198

v “HWSYDRU0 Sample JCL” on page 199

v “HWSUINIT Sample JCL” on page 199

HWSSMPL0 Sample JCL

For the HWSSMPL0 user message exit.

//HWSSMPL JOB (ACTINF01),’PGMRNAME’,

// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M

//SMPL01 EXEC PGM=ASMA90,REGION=32M,

// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’

//SYSLIB DD DSN=SYS1.SDFSMAC,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

// DD DSN=IMSHWS.SHWSMAC,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),

// DSN=&&TEXT(HWSSMPL0)

//SYSPRINT DD SYSOUT=*,

// DCB=(BLKSIZE=605),

// SPACE=(605,(100,50),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// DCB=BLKSIZE=13024,

// SPACE=(CYL,(16,15))

//SYSIN DD DSN=IMSBLD.IMSCON22.APAR.MAINT.SDFSSRC(HWSSMPL0),DISP=SHR

//SMPL02 EXEC PGM=IEWL,COND=(0,NE)

// PARM=’SIZE=(180K,28K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=IMSBLD.USERTEMP.HWSRESL,DISP=SHR

//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)

//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT

//SYSLIN DD *

 INCLUDE TEXT(HWSSMPL0)

 ENTRY HWSSMPL0

 MODE RMODE(24),AMODE(31)

 NAME HWSSMPL0(R)

//

© Copyright IBM Corp. 2000, 2007 197

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HWSSMPL1 Sample JCL

For the HWSSMPL1 user message exit.

//HWSSMPL JOB (ACTINF01),’PGMRNAME’,

// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M

//SMPL01 EXEC PGM=ASMA90,REGION=32M,

// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’

//SYSLIB DD DSN=SYS1.SDFSMAC,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

// DD DSN=IMSHWS.SHWSMAC,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),

// DSN=&&TEXT(HWSSMPL1)

//SYSPRINT DD SYSOUT=*,

// DCB=(BLKSIZE=605),

// SPACE=(605,(100,50),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// DCB=BLKSIZE=13024,

// SPACE=(CYL,(16,15))

//SYSIN DD DSN=IMSBLD.IMSCON22.APAR.MAINT.SDFSSRC(HWSSMPL1),DISP=SHR

//SMPL02 EXEC PGM=IEWL,COND=(0,NE)

// PARM=’SIZE=(180K,28K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=IMSBLD.USERTEMP.HWSRESL,DISP=SHR

//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)

//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT

//SYSLIN DD *

 INCLUDE TEXT(HWSSMPL1)

 ENTRY HWSSMPL1

 MODE RMODE(24),AMODE(31)

 NAME HWSSMPL1(R)

//

HWSJAVA0 Sample JCL

For the HWSJAVA0 user message exit.

//HWSJAVA JOB (ACTINF01),’PGMRNAME’,

// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M

//JAVA01 EXEC PGM=ASMA90,REGION=32M,

// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE)’

//SYSLIB DD DSN=SYS1.SDFSMAC,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

// DD DSN=IMSHWS.SHWSMAC,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),

// DSN=&&TEXT(HWSJAVA0)

//SYSPRINT DD SYSOUT=*,

// DCB=(BLKSIZE=605),

// SPACE=(605,(100,50),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// DCB=BLKSIZE=13024,

// SPACE=(CYL,(16,15))

//SYSIN DD DSN=IMSBLD.IMSCON22.APAR.MAINT.SDFSSRC(HWSJAVA0),DISP=SHR

//JAVA02 EXEC PGM=IEWL,COND=(0,NE)

// PARM=’SIZE=(880K,64K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=IMSHWS.USERTEMP.HWSRESL,DISP=SHR

//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)

//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT

//SYSLIN DD *

 INCLUDE TEXT(HWSJAVA0)

 ENTRY HWSJAVA0

 NAME HWSJAVA0(R)

//

HWSSMPL1 Sample JCL

198 IMS Connect Guide and Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HWSYDRU0 Sample JCL

For the HWSYDRU0 sample OTMA DRU exit.

//HWSYDRU JOB (ACTINF01),’PGMRNAME’,

// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M

//YDRU01 EXEC PGM=ASMA90,REGION=32M,

// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE),SYSPARM(HWSYDRU0)’

//SYSLIB DD DSN=SYS1.SDFSMAC,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

// DD DSN=IMSHWS.SHWSMAC,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),

// DSN=&&TEXT(HWSYDRU0)

//SYSPRINT DD SYSOUT=*,

// DCB=(BLKSIZE=605),

// SPACE=(605,(100,50),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// DCB=BLKSIZE=13024,

// SPACE=(CYL,(16,15))

//SYSIN DD DSN=IMSBLD.IMSCON22.APAR.MAINT.SDFSSRC(HWSYDRU0),DISP=SHR

//YDRU02 EXEC PGM=IEWL,COND=(0,NE)

// PARM=’SIZE=(880K,64K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=IMSBLD.USERTEMP.CRESLIB,DISP=SHR

//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)

//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT

//SYSLIN DD *

 INCLUDE TEXT(HWSYDRU0)

 ENTRY HWSYDRU0

 NAME HWSYDRU0(R)

//

HWSUINIT Sample JCL

For the HWSUINIT user initialization exit.

//HWSINIT JOB (ACTINF01),’PGMRNAME’,

// CLASS=A,MSGCLASS=Z,MSGLEVEL=(1,1),REGION=4M

//UINIT1 EXEC PGM=ASMA90,REGION=32M,

// PARM=’DECK,NOOBJECT,SIZE(MAX,ABOVE),SYSPARM(HWSUINIT)’

//SYSLIB DD DSN=SYS1.SDFSMAC,DISP=SHR

// DD DSN=SYS1.MODGEN,DISP=SHR

// DD DSN=IMSHWS.SHWSMAC,DISP=SHR

// DD DSN=SYS1.MACLIB,DISP=SHR

//SYSPUNCH DD UNIT=SYSVIO,DISP=(,PASS),SPACE=(TRK,(1,1,1)),

// DSN=&&TEXT(HWSUINIT)

//SYSPRINT DD SYSOUT=*,

// DCB=(BLKSIZE=605),

// SPACE=(605,(100,50),RLSE,,ROUND)

//SYSUT1 DD UNIT=SYSDA,DISP=(,DELETE),

// DCB=BLKSIZE=13024,

// SPACE=(CYL,(16,15))

//SYSIN DD DSN=IMSBLD.IMSCON22.APAR.MAINT.SDFSSRC(HWSUINIT),DISP=SHR

//UINIT2 EXEC PGM=IEWL,COND=(0,NE)

// PARM=’SIZE=(880K,64K),RENT,REFR,NCAL,LET,XREF,LIST,TEST’

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSN=IMSBLD.USERTEMP.HWSRESL,DISP=SHR

//SYSUT1 DD UNIT=SYSVIO,DISP=(,DELETE),SPACE=(CYL,(10,1),RLSE)

//TEXT DD UNIT=SYSVIO,DISP=(OLD,DELETE),DSN=&&TEXT

//SYSLIN DD *

 INCLUDE TEXT(HWSUINIT)

 ENTRY HWSUINIT

 NAME HWSUINIT(R)

//

HWSYDRU Sample JCL

Appendix D. IMS Connect JCL 199

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HWSUINIT Sample JCL

200 IMS Connect Guide and Reference

Appendix E. Unicode Considerations

This appendix describes how IMS Connect handles Unicode data and describes in

what circumstances this data is translated. IMS Connect support for Unicode

allows Unicode data to be sent to and from an IMS Connect client application. This

support requires that the client application and the IMS host application both

support:

v Unicode data

v The same Unicode encoding schema (either UTF8, UTF16, or UCS-2) as the

structure and content of the message being sent and received

IMS Connect supports ASCII and EBCDIC data streams both to and from the client

application. If the client application sends ASCII data to IMS Connect, the ASCII is

translated to EBCDIC. The subsequent output from IMS Connect to the client

application is translated back to ASCII from EBCDIC. If the client application sends

EBCDIC data to IMS Connect, no translation is required. With Unicode support, an

IMS client application can also send and receive Unicode data to and from IMS

Connect, specifically UTF8, UTF16, or UCS-2 data streams.

IMS Connect supports language groups 1, 2, and 3.

The client application uses the IMS Request Message (IRM) to:

v Tell IMS Connect if the data it is sending is Unicode and if the IMS transaction

code is being sent as Unicode. IMS Connect transforms the transaction code if it

is being sent as Unicode and then sends the transformed code and unicode data

to IMS.

v Tell IMS Connect the Unicode encoding schema that is being used (UTF8,

UTF16, or UCS-2).

The transaction code can be sent as Unicode, ASCII, or EBCDIC; however, it must

be a valid IMS transaction code of up to 8 bytes that occupies an 8-byte field. In

the field, the code must be left justified and, if it is shorter than 8 bytes, padded

with blanks. If a blank follows the 8-byte transaction code field, it is considered to

be part of the Unicode data.

In this appendix:

v “Message Translation”

v “Input Message Format Sent by the Client” on page 202

v “Output Message Format Received by the Client” on page 202

Message Translation

All IMS error messages (for example, DFS555) are sent as either ASCII or EBCDIC.

The client application uses the IRM_MSGID field of the IRM to tell IMS Connect

which type to send. IMS Connect does not transform messages to Unicode. For

example, if IRM_MSGID is EBCDIC, the IMS error message (DFSnnnn) is sent as

EBCDIC; if IRM_MSGID is ASCII, the IMS error message (DFSnnnn) is translated

from EBCDIC to ASCII.

IRM_MSGID also identifies the code type of the OTMA header.

© Copyright IBM Corp. 2000, 2007 201

An IMS client application can send the IMS transaction code as ASCII, EBCDIC, or

Unicode. When the IMS client application sends the transaction code as Unicode,

the IMS Connect user message exit (HWSSMPL0, HWSSMPL1, HWSIMSO0, and

HWSIMSO1) translates the transaction code from Unicode TO EBCDIC. When the

client application sends the transaction code as ASCII and the remaining data as

Unicode, only the transaction code is translated to EBCDIC. A valid 8-byte IMS

transaction code can be constructed from the following characters and must begin

with an alphabetic character:

v A through Z (uppercase only)

v 0 through 9

v Special characters #, $, @

An IMS host application that supports Unicode must define an 8-byte field in the

input message definition to contain the transaction code. If you pad the 8-byte

field with a blank, it is sent as an EBCDIC blank.

If the client application sends Unicode data, the output message is not transformed

and is treated as Unicode. For RESUME TPIPE requests, the client application must

specify in the IRM if the output should be treated as Unicode or not. During

message switching, the IMS host application must ensure that the output message

is formatted correctly (using a specific Unicode schema or EBCDIC) for its

destination.

Input Message Format Sent by the Client

Table 81 contrasts the message structure for input messages sent by the client. The

overall message structure is the same as the structure defined in “User Exit

Message Description and Structures” on page 60. Table 81 defines the valid ASCII,

EBCDIC, and UNICODE formats.

 Table 81. Input Message Structure - message sent by client

EBCDIC IRM ASCII IRM If OTMA headers

are passed by client

Transaction

Code

Data

Y N/A EBCDIC EBCDIC UNICODE

Y N/A EBCDIC UNICODE UNICODE

N/A Y ASCII ASCII UNICODE

N/A Y ASCII UNICODE UNICODE

Output Message Format Received by the Client

Table 82 defines the valid output message elements when the client sends

UNICODE data. The overall message structure is the same as the structure defined

in “User Exit Message Description and Structures” on page 60.

 Table 82. Output Message Structure - message received by client

If input

message was

EBCDIC

IRM

If input

message was

ASCII IRM

RMM RSM Output CSM Output data

Y N/A EBCDIC EBCDIC EBCDIC UNICODE

N/A Y ASCII ASCII ASCII UNICODE

Unicode Considerations

202 IMS Connect Guide and Reference

Appendix F. Suggested TCP/IP Settings

The following TCP/IP settings are described to assist you with your TCP/IP

installation. You can choose different TCP/IP values to maximize your

environment settings. Here are some suggested values you can use:

TCPNODELAY=ENABLE

v Data is transmitted by TCP/IP per client SEND.

v TCP/IP waits one millisecond per transmission.

v Multiple client TCP/IP SENDS can result in multiple TCP/IP

transmissions.

TCPNODELAY=DISABLE

v Data is collected by TCP/IP from client TCP/IP SENDS, before

transmission.

v TCP/IP waits until the buffer is full before transmission.

v Multiple client SENDS results in 1 to n TCP/IP transmissions to IMS

Connect.

SO_LINGER=Y, VALUE=0

v Immediate return to client code.

v A client request to close the socket can bypass data sent with a previous

client TCP/IP SEND request, but may result in the loss of the client

SEND data.

SO_LINGER=N

v Immediate return to client code.

v A client request to close the socket can bypass data sent with a previous

client TCP/IP SEND request, but may result in the loss of the client

SEND data.

SO_LINGER=Y, VALUE=10

v Return to client code when an ACK is received from the host, or wait for

10 seconds before sending close.

v Socket close will not bypass data sent.

DELAYACK

DELAYACK is used to minimize non-data transmissions from the host. If

DELAYACK is used, the MVS TCP/IP waits 200 milliseconds before

sending an ACK to the remote server TCP/IP. However, if the ACK is

appended to the data being sent from IMS Connect, there is no delay.

 If your client application performs a single SEND followed by a READ,

DELAYACK is recommended.

 DELAYACK can be set on the TCP/IP ″Port Statement″ or on the ″Gateway

Statement.″

NODELAYACK

NODELAYACK is used to allow non-data transmissions from the host to

flow without data. If NODELAYACK is used, the MVS TCP/IP

immediately sends an ACK to the remote server TCP/IP. The ACK is not

appended to the data being sent from IMS Connect.

© Copyright IBM Corp. 2000, 2007 203

If the client code sends one SEND followed by a READ to the host with a

NODELAYACK setting, an ACK is sent separately.

 If the client code sends two or more SENDs followed by a READ to the

host, the host TCP/IP will send an ACK immediately to the data received.

This will allow the next SEND of data from the client to flow.

 NODELAYACK is recommended if your client application sends more than

one SEND followed by a READ.

 NODELAYACK can be set on the TCP/IP ″Port Statement″ or on the

″Gateway Statement.″

Suggested TCP/IP Settings

204 IMS Connect Guide and Reference

Appendix G. HWSTECL0 User Exit

For performance or basic data analysis, you may want to record specific data

events. For example, you may wish to record events such as:

v TCP/IP read/write

v RACF calls

v OTMA send/receive

v User exit calls

v Session errors

v Two-phase commit events

IMS Connect can be customized to facilitate event recording by passing event data

to the load module, HWSTECL0. This module stores all trace and event

notifications through a recording routine and can be used by any event recording

function. IMS Connect provides a sample HWSTECL0 user exit for you to

customize.

In this appendix:

v “Modifying HWSTECL0 User Exit”

v “HWSTECL0 Initialization” on page 206

v “Invoking HWSTECL0 for Event Recording” on page 207

v “Event Types” on page 208

v “Event Record Formats” on page 212

v “Control Blocks and DSECTS for Event Recording” on page 234

v “Terminating HWSTECL0” on page 239

Modifying HWSTECL0 User Exit

Although IMS Connect provides a sample HWSTECL0 user exit, you must modify

the HWSTECL0 user exit, using standard user-exit development guidelines, if you

want to receive event data from IMS Connect. The source code for the HWSTECL0

user exit is located in the ADFSSRC source library.

After you have customized the sample HWSTECL0 user exit, you must install it

into your IMS Connect resource library (SDFSRESL). To install HWSTECL0 into the

resource library, you must compile and bind (link-edit) the user exit before you

execute IMS Connect to create the load module, HWSTECL0. IMS Connect will

load your HWSTECL0 module from the resource library and call it during

initialization and termination.

The following steps describe how to customize, modify, and re-install the

HWSTECL0 exit.

1. Insert your changes to the source code provided in the ADFSSRC source

library.

2. Assemble the exit. The exit and its associated macro files are members of the

partitioned data set into which you receive the ADFSSRC data set. See

“DSECTS for Event Recording” on page 238 for a list of the macro files

associated with the HWSTECL0 exit.

© Copyright IBM Corp. 2000, 2007 205

|

|

|
|

|

|

|

|

|

|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|

|
|
|
|

|
|
|
|
|
|

|
|

|
|

|
|
|
|

3. Bind (link-edit) the output from the assembled job to create a load module

named HWSTECL0.

4. Bind (link-edit) HWSTECL0 into the IMS Connect resource library, SDFSRESL.

IMS Connect loads the module from the resource library during initialization.

HWSTECL0 Initialization

When IMS Connect initializes, IMS Connect automatically loads the HWSTECL0

module and calls the module for event recording initialization. If event and trace

recording is detected and is active, module HWSTECL0 sets the Event Interface

Control Block (EICB) fields, which is used to control event recording, to the

appropriate values needed for event and trace recording. For more information

about the EICB fields, see “Event Interface Control Block (EICB)” on page 235. The

address of the EICB is pointed to by HWSTECL0 register on Register 1 entry. Note,

event initialization will only occur if the caller is executing under the JOBSTEP

TCB, the caller is in primary TCB mode, and the call occurs before any task that

records events is created. Table 83 describes the registers at entry to HWSTECL0.

 Table 83. Registers at entry to HWSTECL0

Register Number Contents and meaning

R1 Address of the Event Interface Control Block (EICB) that is to be

completed by HWSTECL0 when trace or even recording is active.

R13 Address of save area that is a set of pre-chained save areas.

HWSTECL0 must preserve the integrity of the save area set.

R14 Caller’s return address.

R15 Entry point of module HWSTECL0.

The EICB area is allocated by IMS Connect and passed to HWSTECL0 at the

initialization request. The DESECT name is HWSECIB. If trace or event recording

is active, HWSTECL0 completes the EICB and returns it to the caller. The contents

of the control block that are returned from HWSTECL0 are shown in Table 84.

 Table 84. Contents of Event Interface Control Block (EICB) Pointed to by HWSTECL0

Element Length Usage and Meaning

EYECATCHER 4 Value of EICB identifying this block in

working storage. Set by caller.

FLAGS 1 Interface control flags:

1. Event recording is enabled.

EVENT_TOKEN 4 Address of the token used by the event

recording routine. The token must be

passed to the event recording routine when

an event-recording request is made.

EVENT_ADDRESS 4 Entry address of event recording routine.

4 Reserved space.

4 Reserved space.

MESSAGE_LEN 2 Length of the message returned from

HWSTECL0 module.

MESSAGE_AREA 120 An area that can be used by HWSTECL0 to

return an informational or error message to

IMS Connect.

Modifying HWSTECL0 User Exit

206 IMS Connect Guide and Reference

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

||

||

||
|

||
|

||

||
|

|
|
|
|

||

|||

|||
|

|||

|

|||
|
|
|

|||

|||

|||

|||
|

|||
|
|
|

If trace or event recording is not active, HWSTECL0 does not complete the EICB

and instead returns with a return and reason code indicating that trace or event

recording, or both is not active. Table 85 describes the registers at return from

HWSTECL0. Note: Module HWSTECL0 always returns a return code of 0. The

EICB flags must be inspected to determine if event or trace recording is active.

 Table 85. Registers at return from HWSTECL0

Register Number Contents and meaning

R0 Reason code associated with any non-zero return codes passed.

R15 Return code

v 0 = Initialization was successful. Check the EICB to see if trace or

event recording is active.

v 8 = Initialization was not successful. See reason code for additional

information.

Invoking HWSTECL0 for Event Recording

When IMS Connect records an event, IMS Connect calls the event recording

routine address, EVENT_ADDRESS, indicated in the EICB. For each event that is

recorded, the event recording routine passes the Event Record Parameter List

(ERPL), which is used to define the event type and event data. The ERPL defines

which event data to capture. The ERPL records an IMS Connect event and

associated data to an event-recording log. See “Event Recording Parameter List

(ERPL)” on page 234 for more information about the ERPL control block.

When event recording has been initialized, the EICB contains the entry address for

event recording and calls the event recording routine. The routine points to the

ERPL address and records the event. To record an event, the caller requesting event

recording must be in primary TCB mode and the caller must return the event

recording token which is provided in the EICB by HWSTECL0. Table 86 describes

the registers at event recording entry.

 Table 86. Registers at Event Recording Entry

Register Number Contents and meaning

R1 Address of the Event Recording Parameter List (ERPL).

R13 Address of one save area. The event recording routine must preserve

the integrity of the save area.

R14 Caller’s return address.

R15 Entry point of even recording taken from EICB after initialization of

the even recording interface.

Table 87 shows the registers at return from EICB, the event recording interface.

 Table 87. Registers at Return from Event Recording

Register Number Contents and meaning

R0 Reason code associated with any non-zero return codes passed.

R1 When R1 is not equal to zero, it contains the address of a message

providing additional information about initialization of trace and

event recording.

HWSTECL0 Initialization

Appendix G. HWSTECL0 User Exit 207

|
|
|
|
|

||

||

||

||

|
|

|
|
|

|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

||

||

||

||
|

||

||
|
|

|

||

||

||

||
|
|

Table 87. Registers at Return from Event Recording (continued)

Register Number Contents and meaning

R15 Return code

v 0 = Event recording was successful.

v 4 = Event recording is not active -- event was not recorded.

v 16 = Event recording was not successful. See reason code for

additional information. An error message is present if R1 is not

zero.

Error Message Format

If an error message is returned by the event-recording routine, the format of the

error message is described in Table 88. Note, the use of error messages is optional

and currently is not supported.

 Table 88. Error Message Format

Value Contents and meaning

2 byte message length The true length of the error message not including the message

length field.

Error message An error message returned by the recording exit.

Event Types

There are two types of events, single and multiple.

single event

An event that is not related to any other events.

multiple event

Events that are closely related to each other within a process such as a

transaction.

Each event is assigned a numerical value called an event number. Each event also

has an associated key value of either EVNT or SVTOKEN. These two key values

indicate whether or not an event is associated with a multiple event process.

Table 89 describes the key values and the length of the event key.

 Table 89. Keys Associated with Events

Key value Length Usage and meaning

EVNT 8 This is a constant value used to indicate the

event is not associated with a multi-event

process. The constant is left-justified and padded

right with blanks.

SVTOKEN 8 SVT Token. A token representing the SVT control

block for the remote client name associated with

the transaction or multi-event process. The token

is the STCK time of when the SVT was created.

The following table identifies the events that are categorized as a single event type.

Table 90 on page 209 lists the possible single events that may be recorded.

Invoking HWSTECL0

208 IMS Connect Guide and Reference

|

||

||

|

|

|
|
|
|

|

|
|
|

||

||

||
|

||
|

|
|

|

|
|

|
|
|

|
|
|
|

||

|||

|||
|
|
|

|||
|
|
|
|

|
|

Table 90. Single Process Events

Event Number Event Key Event Description

1 EVNT Connect region initialization. This event record is

generated as a result of the call made to module

HWSTECL0 for event recording initialization. This is

the first event recorded for an IMS Connect

execution.

2 EVNT Connect region has completed termination. This

event is the last event recorded for an IMS Connect

execution. This event causes the event recording

process to terminate.

3 EVNT A support task (TCB) has been created. If the task

records events, this event must be the first event

recorded by the task. It should be recorded as soon

as possible after the task begins processing.

4 EVNT A support task (TCB) is terminating. If the task

records events, this event must be the last event

recorded by the task. It should be recorded as close

as possible to the task returning to MVS.

5 EVNT Begin INIT API.

6 EVNT End INIT API

7 EVNT Begin Bind socket.

8 EVNT End Bind socket.

9 EVNT Listen on socket.

10 EVNT Begin Accept socket.

Note Events 12 and 13 are defined in the section on

multi-event types.

14 EVNT Begin init of message exits. This event serves to

initialize the task for message exit processing.

16 EVNT IMS datastore becomes available. The event is

recorded during the following processes. It

represents a successful client bid process.

1. During IMS Connect initialization - once for each

available datastore.

2. After IMS Connect initialization - any time a

datastore joins the XCF group and client bid is

completed.

17 EVNT IMS datastore becomes unavailable. This event

represents a datastore that has become unavailable

for transactions. It could be due to a stop datastore

command or the datastore member leaving the XCF

group. The event is recorded for either occurrence.

18 EVNT An IMS TMEMBER joins the XCF group.

19 EVNT An IMS TMEMBER leaves the XCF group.

20 EVNT Begin SCI registration.

21 EVNT End SCI registration.

22 EVNT Begin SCI De-registration.

23 EVNT End SCI De-registration.

Error Types

Appendix G. HWSTECL0 User Exit 209

||

|||

|||
|
|
|
|

|||
|
|
|

|||
|
|
|

|||
|
|
|

|||

|||

|||

|||

|||

|||

|||
|

|||
|

|||
|
|

|
|

|
|
|

|||
|
|
|
|

|||

|||

|||

|||

|||

|||

Table 90. Single Process Events (continued)

Event Number Event Key Event Description

24 EVNT Recorded trace DCB has been opened. This event

recorded after the recorder trace DCB has been

successfully opened.

25 EVNT Recorded trace DCB pre-close. This event is recorded

when the recorder trace DCB is about to be closed.

This event is recorded while the recorder trace DCB

is still open.

26 EVNT User message exit return from INIT. This event is

recorded just after the user message exit returns.

27 EVNT User message exit return from TERM. This event is

recorded just after the user message exit returns.

28 EVNT Begin Secure Environment Open. This is issued at

the start of SSL environment creation.

29 EVNT End Secure Environment Open. This is issued at the

end of SSL environment creation.

32 EVNT Begin Secure Environment Close. This is issued at

the start of SSL close.

33 EVNT End Secure Environment Close. This is issued at the

end of SSL initialization.

34 EVNT Begin Local Port Setup. This event is recorded when

a local port is present.

35 EVNT End Local Port Setup. This event is recorded when a

local port is present.

36 EVNT Begin RRS Connect. This event is recorded when

RRS connect processing is started.

37 EVNT End RRS Connect. This event is recorded when RRS

connect processing is completed.

38 EVNT List In-doubt Context. This event records the receipt

of an in-doubt context during RRS connect

processing.

39 EVNT Begin RRS Disconnect. This event is recorded when

RRS disconnect processing is started.

40 EVNT End RRS Disconnect. This event is recorded when

RRS disconnect processing is completed.

The following table identifies the events that are categorized as a multiple event

type. Table 91 lists the possible multiple events that may be recorded.

 Table 91. Multi-process Events

Event Number Event Key Event description

12 SVT Token Begin close socket.

13 SVT Token End close socket.

60 SVT Token Prepare for socket read. This is the start-of-frame

event for a multi-event process. It is the first event

associated with an SVT Token.

61 SVT Token User message exit entered for READ, XMIT, or

EXER. This event is recorded just prior to calling the

user message exit.

Error Types

210 IMS Connect Guide and Reference

|

|||

|||
|
|

|||
|
|
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|

|||
|

|||
|
|

|
|

||

|||

|||

|||

|||
|
|

|||
|
|

Table 91. Multi-process Events (continued)

Event Number Event Key Event description

62 SVT Token User message exit return for READ, XMIT, or EXER.

This event is recorded just after the user message

exit returns.

63 SVT Token Begin SAF security request.

64 SVT Token End SAF security request.

65 SVT Token Message sent to OTMA. This entry is made after the

message has been sent to OTMA.

66 SVT Token Message received from OTMA. This entry is made

when a message has been received from OTMA. It is

recorded after all parts of the message have been

assembled.

67 SVT Token Message sent to SCI. This entry is made after the

message has been sent to SCI.

68 SVT Token Message received from SCI. This entry is made as

soon as a message has been received from SCI.

69 SVT Token OTMA time-out. This event signals that a time-out

occurred for an OTMA request.

70 SVT Token De-allocate request. This event is generated when

IMS Connect honors a request from the remote client

to disconnect the session.

71 SVT Token Session error. This event is called when an

unrecoverable error has been encountered and the

session is being aborted. Fro this error condition, this

should probably be the last event before the trigger

event is recorded.

72 SVT Token Trigger event. This is the end-of-frame event

recorded by IMS Connect when a multi-event

process has completed.

73 SVT Token Read socket.

74 SVT Token Write socket.

75 SVT Token Local client connect. This event is issued at receipt of

the client connect call (logon).

76 SVT Token Local message send. This event is issued when IMS

Connect receives a local client message. The send

orientation is to the local client.

77 SVT Token Local message receive. This event is issued when

IMS Connect sends a local client message. The

receive orientation is to the local client.

78 SVT Token Local message send-then-receive. This event is

issued when IMS Connect receives a local client

message. The local client waits until the output

message is ready and IMS Connect sends the

message back to the local client. The send and

receive orientation is to the local client.

79 SVT Token Local disconnect. This event is issued when IMS

Connect disconnects from a local client (logoff).

80 SVT Token Begin create context. This event records the request

to RRS to create a context for a transaction

requesting two-phase commit support.

Error Types

Appendix G. HWSTECL0 User Exit 211

|

|||

|||
|
|

|||

|||

|||
|

|||
|
|
|

|||
|

|||
|

|||
|

|||
|
|

|||
|
|
|
|

|||
|
|

|||

|||

|||
|

|||
|
|

|||
|
|

|||
|
|
|
|
|

|||
|

|||
|
|

Table 91. Multi-process Events (continued)

Event Number Event Key Event description

81 SVT Token End create context. This event records the end of

creation of context for a transaction requesting

two-phase commit support.

82 SVT Token Begin RRS prepare. This event records sending the

prepare-to-commit request to RRS.

83 SVT Token End RRS prepare. This event records receiving the

response to the prepare-to-commit request.

84 SVT Token Begin RRS commit/abort. This event records sending

the commit/abort request to RRS.

85 SVT Token End RRS commit/abort. This event records receiving

a response to the commit/abort request.

86 SVT Token Begin secure environment select. This is issued at the

end of SSL select.

87 SVT Token End secure environment select. This is issued at the

end of SSL select.

88 SVT Token Entire message received from the OTMA

asynchronous tpipe hold queue in response to a

RESUME TPIPE call. This event is recorded at the

end of message assembly.

Event Record Formats

The following tables list the format for all event records. Each table identifies each

possible event in the ERPL (Event Record Parameter List) that can be recorded to

the HWSTECL0 module and provides the format for each event.

Table 92 identifies the parameter list content associated with the IMS Connect

region initialization event.

 Table 92. Connect Region Initialization Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 1 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 4 2

VAR_DATA Start of variable data area. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_VVRR IMS Connect Version and Release data. 2

Table 93 identifies the parameter list contents associated with the Connect region

termination.

 Table 93. Connect Region Termination Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 2 4

Error Types

212 IMS Connect Guide and Reference

|

|||

|||
|
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|
|
|

|
|

|
|
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|
|
|

||

|||

|||

|||

Table 93. Connect Region Termination Event (continued)

Parameter list item Content Length in bytes

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data area. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_COMPCODE Completion code associated with region

termination.

4

Table 94 identifies the parameter list contents associated with the Support Task

Created event.

 Table 94. Support Task Created Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 3 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data area. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_FLAG Flag field indicating TCB type:

1. port

2. local

3. recorder

2

VAR_PORT Port number if port task. 2

Table 95 identifies the parameter list contents associated with the Support Task

Terminating event.

 Table 95. Support Task Terminating Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 4 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_FLAG Flag field indicating TCB type:

1. port

2. local

3. recorder

2

VAR_PORT Port number if port task. 2

Event Record Formats

Appendix G. HWSTECL0 User Exit 213

|

|||

|||

|||

|||

|||

|||

||
|
|

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||

|

|

|

|

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||

|

|

|

|

|||

Table 96 identifies the parameter list contents associated with the event, Begin

Initialize API.

 Table 96. Begin Initialize API Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 5 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

Table 97 identifies the parameter list contents associated with the event, End

Initialize API.

 Table 97. End Initialize API Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 6 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control

block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 98 identifies the parameter list contents associated with the Begin Bind Socket

event. If this is a secure socket (SSL), the TCPIB (TCP/IP Information Block)

contains a flag indicating the operation is executing against an SSL port.

 Table 98. Begin Bind Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 7 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

Table 99 on page 215 identifies the parameter list contents associated with the End

Bind Socket event. If this is a secure socket (SSL), the TCPIB (TCP/IP Information

Block) contains a flag indicating the operation is executing against an SSL port.

Event Record Formats

214 IMS Connect Guide and Reference

|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

Table 99. End Bind Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 8 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 100 identifies the parameter list contents associated with the Listen on Socket

event. If this is a secure socket, the TCPIB contains a flag indicating the operations

is executing against an SSL port.

 Table 100. Listen on Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 9 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB 4

Table 101 identifies the parameter list contents associated with the Begin Accept

Socket event. If this is a secure socket, the TCPIB contains a flag indicating the

operation is executing against an SSL port.

 Table 101. Begin Accept Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 10 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 102 on page 216 identifies the parameter list contents associated with the End

Accept Socket event. If this is a secure socket, the TCPIB contains a flag indicating

the operation is executing against an SSL port.

Event Record Formats

Appendix G. HWSTECL0 User Exit 215

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

Table 102. End Accept Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 11 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 103 identifies the parameter list content associated with the Begin

Initialization of Message Exits event.

 Table 103. Begin Initialization of Message Exits

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 14 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

Table 104 identifies the parameter list contents associated with the Datastore

Available event.

 Table 104. Datastore Available Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 16 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 105 identifies the parameter list contents associated with the Datastore

Unavailable event.

 Table 105. Datastore Unavailable Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 17 4

EVENT_KEY EVNT 8

Event Record Formats

216 IMS Connect Guide and Reference

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

Table 105. Datastore Unavailable Event (continued)

Parameter list item Content Length in bytes

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 106 identifies the parameter list contents associated with the TMEMBER Joins

XCF Group event.

 Table 106. TMEMBER Joins XCF Group Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 18 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 107 identifies the parameter list contents associated with the TMEMBER

Leaves XCF Group event.

 Table 107. TMEMBER Leaves XCF Group Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 19 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 108 identifies the parameter list contents associated with the Begin SCI

Registration event.

 Table 108. Begin SCI Registration Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 20 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 109 on page 218 identifies the parameter list contents associated with the End

SCI Registration event.

Event Record Formats

Appendix G. HWSTECL0 User Exit 217

|

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

Table 109. End SCI Registration Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 21 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 110 identifies the parameter list contents associated with the Begin SCI

De-registration event.

 Table 110. Begin SCI De-registration Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 22 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 111 identifies the parameter list contents associated with the End SCI

De-registration event.

 Table 111. End SCI De-registration Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 23 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the DSIB. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control

block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 112 on page 219 identifies the parameter list contents associated with the

Recorder Trace DCB Opened event.

Event Record Formats

218 IMS Connect Guide and Reference

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||
|

|
|

Table 112. Recorder Trace DCB Opened Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 24 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the recorder trace DCB. 4

Table 113 identifies the parameter list contents associated with the Recorder Trace

DCB Pre-close event.

 Table 113. Recorder Trace DCB Pre-close Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 25 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

Table 114 identifies the parameter list contents associated with the Message Exit

INIT Call event.

 Table 114. Message Exit INIT Call Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 26 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 18 2

EVENT_DATA_ADDR Address of the exit parameter list. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control

block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

VAR_EXIT_NAME Name of the user message exit. 8

Table 115 identifies the parameter list contents associated with the Message Exit

TERM Call event.

 Table 115. Message Exit TERM Call Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 27 4

Event Record Formats

Appendix G. HWSTECL0 User Exit 219

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||

|||

|||
|

|
|

||

|||

|||

|||

Table 115. Message Exit TERM Call Event (continued)

Parameter list item Content Length in bytes

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control

block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

VAR_EXIT_NAME Name of the user message exit. 8

Table 116 identifies the parameter list contents associated with the Begin Secure

Environment Open event.

 Table 116. Begin Secure Environment Open Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 28 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 117 identifies the parameter list contents associated with the End Secure

Environment Open event.

 Table 117. End Secure Environment Open Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 29 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB.

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 118 on page 221 identifies the parameter list contents associated with the

Begin Secure Environment Close event.

Event Record Formats

220 IMS Connect Guide and Reference

|

|||

|||

|||

|||

|||

||
|
|

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

Table 118. Begin Secure Environment Close Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 32 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 119 identifies the parameter list contents associated with the End Secure

Environment Close event.

 Table 119. End Secure Environment Close Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 33 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 120 identifies the parameter list contents associated with the Begin Local Port

Setup event.

 Table 120. Begin Local Port Setup Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 34 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 121 identifies the parameter list contents associated with the End Local Port

Setup event.

 Table 121. End Local Port Setup Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 35 4

Event Record Formats

Appendix G. HWSTECL0 User Exit 221

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

Table 121. End Local Port Setup Event (continued)

Parameter list item Content Length in bytes

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 14 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 122 identifies the parameter list contents associated with the Begin RRS

Connect event.

 Table 122. Begin RRS Connect Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 36 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

Table 123 identifies the parameter list contents associated with the End RRS

Connect event.

 Table 123. End RRS Connect Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 37 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

Table 124 identifies the parameter list contents associated with the List In-doubt

Context event.

 Table 124. List In-doubt Context Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 38 4

EVENT_KEY EVNT 8

Event Record Formats

222 IMS Connect Guide and Reference

|

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

Table 124. List In-doubt Context Event (continued)

Parameter list item Content Length in bytes

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 162 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_URTOKEN The UR_INTEREST_TOKEN returned by

RRS.

16

VAR_XID The XID associated with this transaction 140

Table 125 identifies the parameter list contents associated with the Begin RRS

Disconnect event.

 Table 125. Begin RRS Disconnect Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 39 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

Table 126 identifies the parameter list contents associated with the End RRS

Disconnect event.

 Table 126. End RRS Disconnect Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 40 4

EVENT_KEY EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control

block.

2

VAR_RC Return code. 4

Table 127 identifies the parameter list contents associated with the Begin Close

Socket event. If this is a secure socket (SSL), the TCPIB (TCP/IP Information Block)

contains a flag indicating that the operations is executing against an SSL port.

 Table 127. Begin Close Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 12 4

Event Record Formats

Appendix G. HWSTECL0 User Exit 223

|

|||

|||

|||

|||

|||

|||

||
|
|

|||
|

|
|

||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|||
|

|
|
|

||

|||

|||

|||

Table 127. Begin Close Socket Event (continued)

Parameter list item Content Length in bytes

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 128 identifies the parameter list contents associated with the End Close

Socket event. If this is a secure socket, the TCPIB contains a flag indicating the

operations is executing against an SSL port.

 Table 128. End Close Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 13 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 10 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_APAR APAR sequence number for the control block. 2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 129 identifies the parameter list contents associated with the Prepare Socket

Read event.

 Table 129. Prepare Socket Read Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 60 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 130 identifies the parameter list contents associated with the Message Exit

Called for READ, XMIT, or EXER event.

 Table 130. Message Exit Called for READ, XMIT, or EXER Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 61 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 2 2

VAR_DATA_LL 10 2

Event Record Formats

224 IMS Connect Guide and Reference

|

|||

|||

|||

|||

|||
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

Table 130. Message Exit Called for READ, XMIT, or EXER Event (continued)

Parameter list item Content Length in bytes

EVENT_DATA_ADDR Address of the parameter list at entry (R1). 4

EVENT_DATA_ADDR2 If READ or EXER, address of the IRM header.

If XMIT, address of the OTMA header.

4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_EXIT_NAME Exit name. 8

Table 131 identifies the parameter list contents associated with the Message Exit

Return for READ, XMIT, or EXER event.

 Table 131. Message Exit Return for READ, XMIT, or EXER Event.

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 62 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 2 2

VAR_DATA_LL 18 2

EVENT_DATA_ADDR Address of the parameter list at entry (R1). 4

EVENT_DATA_ADDR2 If XMIT or EXER, address of the remote

client message. If READ, address of the

OTMA header.

4

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control

block.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

VAR_EXIT_NAME Exit name. 8

Table 132 identifies the parameter list contents associated with the Begin SAF

Request event.

 Table 132. Begin SAF Request Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 63 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the SAFIB. 4

Table 133 on page 226 identifies the parameter list contents associated with the End

SAF Request event.

Event Record Formats

Appendix G. HWSTECL0 User Exit 225

|

|||

|||

||
|
|

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|

|||

||
|
|

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

Table 133. End SAF Request Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 64 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the SAFIB. 4

Table 134 identifies the parameter list contents associated with the Message Sent to

OTMA event.

 Table 134. Message Sent to OTMA Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 65 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 135 identifies the parameter list contents associated with the Message

Received from OTMA event.

 Table 135. Message Received From OTMA Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 66 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 136 identifies the parameter list contents associated with a Message Sent to

SCI event.

 Table 136. Message Sent to SCI Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 67 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Event Record Formats

226 IMS Connect Guide and Reference

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

Table 137 identifies the parameter list contents associated with a Message Received

from SCI event.

 Table 137. Message Received From SCI Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 68 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the DSIB. 4

Table 138 identifies the parameter list contents associated with an OTMA Time-out

event.

 Table 138. OTMA Time-out Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 69 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_TO_VALUE Time-out value. 4

Table 139 identifies the parameter list contents associated with a De-allocate

Session event.

 Table 139. De-allocate Session Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 70 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 6 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_DEALC_RSN Reason for session de-allocation. Note: Can be

a flag or constant type of reason.

4

Table 140 on page 228 identifies the parameter list contents associated with a

Session Error event.

Event Record Formats

Appendix G. HWSTECL0 User Exit 227

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|

|
|

Table 140. Session Error Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 71 4

EVENT_KEY SVT Token or EVNT 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 154 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_FLAG Flag fields indicating record content.

1. Message is present in the record.

2. Out-of-frame error.

2

VAR_MESSAGE If a message is generated for the error, it is

contained in this field.

134

VAR_SESS_RSN Reason for the session de-allocation. Note: The

session reason is a character expression of the

error type.

8

VAR_SESS_TOKEN The SVTTOKEN associated with the message

when the session error occurs out-of-frame and

the SVTTOKEN for the message cannot be

located by IMS Connect. Note: This field is

valid only when the key of the event is EVNT.

If the key is an SVTTOKEN value, this field is

zero. In some cases, where asynchronous

output is created by a non-IMS Connect source,

the field may contain values that do not

resemble a normal IMS Connect SVTTOKEN.

8

Table 141 identifies the parameter list contents associated with a Trigger event.

 Table 141. Trigger Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 72 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 10 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_TRIG_TYPE Constant identifying triggers type. Values can

be TRAN or TPIPE or anything else that is

needed.

8

Table 142 on page 229 identifies the parameter list contents associated with a Read

Socket event.

Event Record Formats

228 IMS Connect Guide and Reference

||

|||

|||

|||

|||

|||

|||

|||

|||

||

|

|

|

||
|
|

||
|
|

|

||
|
|
|
|
|
|
|
|
|

|

|

|

||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|

|

|
|

Table 142. Read Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 73 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 143 identifies the parameter list contents associated with the Write Socket

event.

 Table 143. Write Socket Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 74 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 144 identifies the parameter list contents associated with the Local Client

Connect event.

 Table 144. Local Client Connect Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 75 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 145 identifies the parameter list contents associated with the Local Message

Send event. This event is completed following the event recording of the SRB

scheduling and may not precisely mark the actual completion of the operation.

 Table 145. Local Message Send Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 76 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Event Record Formats

Appendix G. HWSTECL0 User Exit 229

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||

Table 146 identifies the parameter list contents associated with the Local Message

Receive event. This event is completed following the event recording of the SRB

scheduling and may not precisely mark the actual completion of the operation.

 Table 146. Local Message Receive

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 77 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 147 identifies the parameter list contents associated with the Local Message

Send/Receive event. This event is completed following the copy of the SRB

scheduling and may not precisely mark the actual completion of the operation.

 Table 147. Local Message Send/Receive Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 78 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 148 identifies the parameter list contents associated with the Local Client

Disconnect event.

 Table 148. Local Client Disconnect Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 79 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR Address of the TCPIB. 4

Table 149 identifies the parameter list contents associated with the Begin Create

Context event.

 Table 149. Begin Create Context Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 80 4

Event Record Formats

230 IMS Connect Guide and Reference

|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

Table 149. Begin Create Context Event (continued)

Parameter list item Content Length in bytes

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 0 2

Table 150 identifies the parameter list contents associated with the End Create

Context event.

 Table 150. End Create Context Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 81 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 162 2

VAR_DATA Start of variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_RC RRS return code. 4

VAR_URTOKEN UR Interest token returned from RRS. 16

VAR_XID The remote client XID associated with the

transaction.

140

Table 151 identifies the parameter list contents associated with the Begin RRS

Prepare event.

 Table 151. Begin RRS Prepare Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 82 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 18 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_URTOKEN URTOKEN associated with the request. 16

Table 152 identifies the parameter list contents associated with the End RRS

Prepare event.

 Table 152. End RRS Prepare Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 83 4

EVENT_KEY SVT Token 8

Event Record Formats

Appendix G. HWSTECL0 User Exit 231

|

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||
|
|

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

||

|||

|||

|||

|||

Table 152. End RRS Prepare Event (continued)

Parameter list item Content Length in bytes

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 24 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control

block.

2

VAR_RC Return code. 4

VAR_FLAG Result flags:

1. At least 1 participant replied abort.

Note: The results flag is set if any participant

has requested the context be aborted.

2

VAR_URTOKEN URTOKEN associated with the request. 16

Table 153 identifies the parameter list contents associated with the Begin RRS

Commit/Abort event.

 Table 153. Begin RRS Commit/Abort Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 84 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 20 2

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_FLAG Result flags:

1. request to abort

2. request to commit

Note: The results flag is set if any participant

has requested the context be aborted.

2

VAR_URTOKEN URTOKEN associated with the request. 16

Table 154 identifies the parameter list contents associated with the End RRS

Commit/Abort event.

 Table 154. End RRS Commit/Abort Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 85 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 0 2

VAR_DATA_LL 24 2

VAR_DATA Start of the variable data. 0

Event Record Formats

232 IMS Connect Guide and Reference

|

|||

|||

|||

|||

||
|
|

|||

||

|

|
|

|

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

||

|

|

|
|

|

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

Table 154. End RRS Commit/Abort Event (continued)

Parameter list item Content Length in bytes

VAR_APAR APAR sequence number for the control

block.

2

VAR_FLAG Result flags:

1. request to abort

2. request to commit

3. could not find the URTOKEN

Note: The results flag is set if any

participant has requested the context be

aborted.

2

VAR_RC Return code. 4

VAR_URTOKEN URTOKEN associated with the request. 16

Table 155 identifies the parameter list contents associated with the Begin Secure

Environment Select event.

 Table 155. Begin Secure Environment Select Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 86 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 4 2

EVENT_DATA_ADDR Address of the TCPIB 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

VAR_FLAG Result flags:

1. Select for Read.

2. Select for Write

2

Table 156 identifies the parameter list contents associated with the End Secure

Environment Select event.

 Table 156. End Secure Environment Select Event

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 87 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 1 2

VAR_DATA_LL 12 2

EVENT_DATA_ADDR Address of the TCPIB. 4

VAR_DATA Start of the variable data. 0

VAR_APAR APAR sequence number for the control block. 2

Event Record Formats

Appendix G. HWSTECL0 User Exit 233

|

|||

||
|
|

||

|

|

|

|
|
|

|

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

||

|

|

|

|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

Table 156. End Secure Environment Select Event (continued)

Parameter list item Content Length in bytes

VAR_FLAG Result flags:

1. Select for Read.

2. Select for Writer.

2

VAR_RC Return code. 4

VAR_RSN Reason code. 4

Table 157 identifies the parameter list contents associated with a message received

from OTMA event in response to a RESUME TPIPE call.

 Table 157. Message Received From OTMA Event in Response to RESUME TPIPE Call

Parameter list item Content Length in bytes

TOKEN Token address 4

EVENT_NUMBER 88 4

EVENT_KEY SVT Token 8

DATA_ADDR_COUNT 2 2

VAR_DATA_LL 0 2

EVENT_DATA_ADDR1 Address of the DSIB. 4

EVENT_DATA_ADDR2 Address of SVT Token of INPUT SVT 4

Control Blocks and DSECTS for Event Recording

The following tables list the DSECTS and control blocks that are referenced by

various events. Each table describes the parameter list contents of control blocks

that are used to record an IMS Connect event and associated data.

Event Recording Parameter List (ERPL)

This control block is used to record an IMS Connect event and associated data to

an event-recording log. The parameter list contains mandatory and optional fields.

The content and usage of the list arguments is dependent on the event being

recorded. The DSECT name is HWSERPL. The contents of the ERPL which are

pointed to by HWSTECL0 are shown in Table 158.

 Table 158. Event Recording Parameter List (ERPL) Pointed to by HWSTECL0

Element Length Usage and Meaning

TOKEN 4 Address of the token for event recording. This is

the token returned in the EICB when event

recording was initialized. Required.

EVENT_NUMBER 2 The number associated with the event being

recorded. Required.

EVENT_KEY 8 The event key that is associated with the event

being recorded. Required.

DATA_ADDR_COUNT 2 Count of the number of EVENT_DATA_ADDR

entries in the parameter list. A count of 0 indicates

that no entries are present. Required, but can be 0.

Event Record Formats

234 IMS Connect Guide and Reference

|

|||

||

|

|

|

|||

|||
|

|
|

||

|||

|||

|||

|||

|||

|||

|||

|||
|

|
|

|
|
|

|

|
|
|
|
|

||

|||

|||
|
|

|||
|

|||
|

|||
|
|

Table 158. Event Recording Parameter List (ERPL) Pointed to by HWSTECL0 (continued)

Element Length Usage and Meaning

VAR_DATA_LL 2 Length of the variable data element. The variable

data length does not include this length field. A

length of 0 indicates that no variable data is

present. Required, but can be 0.

EVENT_DATA_ADDR 4 The address of a data element that begins with a

two-byte length field. The parameter list can

contain any number of element addresses. The

number of element addresses is contained in

DATA_ADDR_COUNT. Optional.

VAR_DATA VAR A variable length field containing event dependent

data. The length of the data element is defined by

VAR_DATA_LL. Only one variable data element

can be present in the parameter list. Optional.

Event Interface Control Block (EICB)

This control block links IMS Connect and the trace and event recording module,

HWSTECL0. The block is formatted by IMS Connect and passed to HWSTECL0

with the initialization request. The DSECT name is HWSEICB.

The contents of the EICB are shown in Table 159.

 Table 159. EICB Parameter List Contents

Element Length Usage and Meaning

EYECATCHER 4 Value of EICB identifying this block in working

storage. Set by caller.

FLAGS 1 Interface control flags:

1. Event recording is enabled.

EVENT_TOKEN 4 Address of the token used by the event recording

routine. The token must be passed to the event

recording routine when an event-recording request is

made.

EVENT_ADDRESS 4 Entry address of event recording routine.

4 Reserved space.

4 Reserved space.

MESSAGE_LEN 2 Length of the message returned from HWSTELC0

module.

MESSAGE_AREA 120 An area that can be used by HWSTECL0 to return an

informational or error message to IMS Connect.

TCP/IP Information Block (TCPIB)

This control block is used to pass information about TCP/IP events to the event

recording routine. The block contains a length field that allows the recording

routine to capture the block information regardless of the content or length. When

the block is recorded, the entire block is moved to the event record based on the

length field. The DSECT is HWSTCPIB.

Control Blocks and DSECTS

Appendix G. HWSTECL0 User Exit 235

|

|||

|||
|
|
|

|||
|
|
|
|

|||
|
|
|
|

|

|
|
|

|

||

|||

|||
|

|||

|

|||
|
|
|

|||

|||

|||

|||
|

|||
|
|

|

|
|
|
|
|

The contents of the TCPIB are shown in Table 160.

 Table 160. TCP/IP Information Block (TCPIB) Contents

Element Length Usage and Meaning

LENGTH 2 Length of the TCPIP block, including the length of

the field.

BLOCK_ID 1 Block ID = X'01' identifying the block as a TCPIB.

VERSION 2 The version and release of IMS Connect in the

VVRR format.

APAR_COUNT 2 A sequential count field starting at one and

incrementing by one for any APAR changing the

format or content of the control block. The number

resets to one at each new release.

PORT_NUMBER 2 The port number associated with the TCP/IP event

being recorded.

LOCAL_PC_NUM 4 The PC number used by the local connection.

SOCKET_NUM 2 The socket number associated with the request. This

field is redefined to LOCAL_PC_NUM. A 2-byte

reserved field follows this field to account for the

4-byte length of LOCAL_PC_NUM.

SOCKET_FLAG 1 A flag byte identifying information about the

socket.

1. Listen socket.

2. Session socket.

PORT_FLAG 1 A flag byte identifying information about the port.

1. SSL port.

2. Local port.

LENGTH_ISSUED 4 The length values associated with the read or write

command.

LENGTH_EXECUTED 4 The length value actually executed by the read or

write command.

LOCAL_SND_LEN 4 Overlays LENGTH_ISSUED. For the local interface,

the lengths for a local send operation.

LOCAL_RCV_LEN 4 Overlays LENGTH_EXECUTED. For the local

interface, the lengths for a local receive operation.

EVENT_DATA 4 Data or flag bits or both associated with the event.

This data can be unique for each event recording

the TCPIB.

RETURN_CODE 4 Return code associated with the request.

TCPIP REASON_CODE 4 Reason code received from TCP/IP.

LOCAL REASON_CODE 8 Reason code received from local interface.

Datastore Information Block (DSIB)

This block is used to pass information about Datastore-related events to the event

recording routine. The DSIB is also used with the SYSPLEX interface. The block

contains a length field that allows the recording routine to capture the block

information regardless of the content or length. When the block is recorded, the

entire block is moved to the event record. The DSECT name is HWSDSIB.

Control Blocks and DSECTS

236 IMS Connect Guide and Reference

|

||

|||

|||
|

|||

|||
|

|||
|
|
|

|||
|

|||

|||
|
|
|

|||
|

|

|

|||

|

|

|||
|

|||
|

|||
|

|||
|

|||
|
|

|||

|||

|||
|

|

|
|
|
|
|

The contents of the DSIB are shown in Table 161.

 Table 161. Datastore Information Block (DSIB) Contents

Element Length Usage and Meaning

LENGTH 2 Length of the DSIB block, including the length of the

field.

BLOCK_ID 1 Block ID = X'02' identifying the block as a DSIB.

DS_FLAG 1 A flag byte providing information about the

DSTOR_NAME field:

1. Name is datastore.

2. Name is SCI.

3. Name is MEMBER.

4. Name is TMEMBER.

VERSION 2 The version and release of IMS Connect in the VVRR

format.

APAR_COUNT 2 A sequential count field starting at one and

incrementing by one for any APAR changing the format

or content of the control block. The number resets to

one at each new release.

DSTOR_NAME 16 Name associated with the datastore. For the SYSPLEX

(SCI) interface, this is the SYSPLEX name. The field can

also be the name of a MEMBER or TMEMBER.

DATA_LEN 4 Length associated with a send or receive operation.

DATA_ADDR 4 Data address if any associated with the event. Currently,

only OTMA sends and receives operations.

RETURN_CD 4 The return code associated with the operation.

REASON_CD 4 The reason code associated with the operation.

TPIPE_NAME 8 The TPIPE name associated with the data transfer.

CUR_SVTTOKEN 8 The SVT Token associated with the request, if any.

Security Information Block (SAFIB)

This block is used to pass information about security-related events to the

event-recording routine. The block contains a length field that allows the recording

routine to capture block information regardless of the content or length. When the

block is recorded, the entire block is moved to the event record. The DSECT name

is HWSSAFIB.

The contents of SAFIB are shown in Table 162.

 Table 162. Security Information Block (SAFIB) Contents

Element Length Usage and Meaning

LENGTH 2 Length of the SAFIB block, including the length of the

field.

BLOCK_ID 1 Block ID = X'03' identifying the block as a SAFIB.

VERSION 2 The version and release of IMS Connect in the VVRR

format.

APAR_COUNT 2 A sequential count field starting at one and

incrementing by one for any APAR changing the

format or content of the control block. The number

resets to one at each new release.

Control Blocks and DSECTS

Appendix G. HWSTECL0 User Exit 237

|

||

|||

|||
|

|||

|||
|

|

|

|

|

|||
|

|||
|
|
|

|||
|
|

|||

|||
|

|||

|||

|||

|||
|

|

|
|
|
|
|

|

||

|||

|||
|

|||

|||
|

|||
|
|
|

Table 162. Security Information Block (SAFIB) Contents (continued)

Element Length Usage and Meaning

REQUEST_TYPE 1 Flag indicating the type of request:

1. Type is VERIFY.

2. Type is FASTAUTH.

3. Type is DELETE.

4. Type is LIST.

USERID 8 USERID or PASSTICKET associated with the request.

CLASS_NAME 8 Name of the SAF class associated with the request.

RETURN_CODE 4 Return code received.

REASON_CODE 4 Reason code received from the SAF interface.

Variable Data Block (VDB)

This block is used to present variable data to the event-recording interface. The

block is contained within the event parameter list. The block does not contain a

length field. The length of this block is specified in the even parameter lists. This

allows the block information to be captured regardless of the content or length.

When the block is recorded, the entire block is moved to the event record. The

DSECT name is HWSVDBxx, where xx equals the event number.

The contents of the VDB are shown in Table 163.

 Table 163. Variable Data Block (VDB) Contents

Element Length Usage and Meaning

VAR_DATA variable A set of fields defined as variable data for each event

that contains variable data. Each event can have

individually defined variable data.

DSECTS for Event Recording

The following table lists all the macros that are shipped with IMS Connect to help

customize with event recording:

 Table 164. Event Recording Macros Shipped with IMS Connect

Macro Function

HWSDSIB DATASTORE INFORMATION BLOCK

HWSEICB EVENT INITIALIZATION BLOCK

HWSERPL EVENT RECORDING PARAMETER LIST

HWSSAFIB SAF INTERFACE BLOCK

HWSTCPIB TCPIP EVENT INFORMATION BLOCK

HWSVDB01 EVENT 01 VARIABLE DATA BLOCK

HWSVDB02 EVENT 02 VARIABLE DATA BLOCK

HWSVDB03 EVENT 03 VARIABLE DATA BLOCK

HWSVDB04 EVENT 04 VARIABLE DATA BLOCK

HWSVDB06 EVENT 06 VARIABLE DATA BLOCK

HWSVDB08 EVENT 08 VARIABLE DATA BLOCK

HWSVDB11 EVENT 11 VARIABLE DATA BLOCK

Control Blocks and DSECTS

238 IMS Connect Guide and Reference

|

|||

|||

|

|

|

|

|||

|||

|||

|||
|

|

|
|
|
|
|
|

|

||

|||

|||
|
|
|

|

|
|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 164. Event Recording Macros Shipped with IMS Connect (continued)

Macro Function

HWSVDB13 EVENT 13 VARIABLE DATA BLOCK

HWSVDB21 EVENT 21 VARIABLE DATA BLOCK

HWSVDB23 EVENT 23 VARIABLE DATA BLOCK

HWSVDB26 EVENT 26 VARIABLE DATA BLOCK

HWSVDB27 EVENT 27 VARIABLE DATA BLOCK

HWSVDB29 EVENT 29 VARIABLE DATA BLOCK

HWSVDB33 EVENT 33 VARIABLE DATA BLOCK

HWSVDB35 EVENT 35 VARIABLE DATA BLOCK

HWSVDB37 EVENT 37 VARIABLE DATA BLOCK

HWSVDB38 EVENT 38 VARIABLE DATA BLOCK

HWSVDB40 EVENT 40 VARIABLE DATA BLOCK

HWSVDB61 EVENT 61 VARIABLE DATA BLOCK

HWSVDB62 EVENT 62 VARIABLE DATA BLOCK

HWSVDB69 EVENT 69 VARIABLE DATA BLOCK

HWSVDB70 EVENT 70 VARIABLE DATA BLOCK

HWSVDB71 EVENT 71 VARIABLE DATA BLOCK

HWSVDB72 EVENT 72 VARIABLE DATA BLOCK

HWSVDB81 EVENT 81 VARIABLE DATA BLOCK

HWSVDB82 EVENT 82 VARIABLE DATA BLOCK

HWSVDB83 EVENT 83 VARIABLE DATA BLOCK

HWSVDB84 EVENT 84 VARIABLE DATA BLOCK

HWSVDB85 EVENT 85 VARIABLE DATA BLOCK

HWSVDB86 EVENT 86 VARIABLE DATA BLOCK

HWSVDB87 EVENT 87 VARIABLE DATA BLOCK

Terminating HWSTECL0

To end event recording, IMS Connect calls the event recording routine address in

the EICB. The routine is passed to the ERPL, which defines the event and event

data. The event number which is passed to the event recording routine

corresponds to the Connect Region Termination event. See Table 93 on page 212 for

the contents of the parameter list.

When the termination processing for event recording has completed, HWSTECL0

must return to the caller otherwise IMS will hang.

Note: The termination call to HWSTECL0 is made even if the event recording flag

in the EICB is not on. If the EICB contains a token and event recording address,

the termination call is made so that event recording can terminate the event

recording environment.

The event recording termination call can only occur when the caller is executing

under the JOBSTEP TCB, the caller is in primary TCB mode, and all tasks as

potential event records have terminated.

Control Blocks and DSECTS

Appendix G. HWSTECL0 User Exit 239

|

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||

||
|

|
|

|
|
|
|
|

|
|

|
|
|
|

|
|
|

240 IMS Connect Guide and Reference

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2000, 2007 241

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact:

IBM Corporation

J46A/G4

555 Bailey Avenue

San Jose, CA 95141-1003

U.S.A.

Such information may be available, subject to appropriate terms and conditions,

including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Any performance data contained herein was determined in a controlled

environment. Therefore, the results obtained in other operating environments may

vary significantly. Some measurements may have been made on development-level

systems and there is no guarantee that these measurements will be the same on

generally available systems. Furthermore, some measurement may have been

estimated through extrapolation. Actual results may vary. Users of this document

should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or

withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to

change before the products described become available.

This information contains examples of data and reports used in daily business

operations. To illustrate them as completely as possible, the examples include the

names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to the names and addresses used by an actual business

enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrates programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

242 IMS Connect Guide and Reference

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Programming Interface Information

This publication is intended to help the customer perform the following tasks:

v Plan for and design the installation of IMS Connect.

v Install and operate IMS Connect.

v Diagnose and recover from IMS Connect system problems.

v Write an IMS Connect client.

v Use IMS Connect with IMS Connector for Java.

The IMS Connect Guide and Reference primarily documents General-use

Programming Interfaces and Associated Guidance Information provided by IMS

Connect.

General-use programming interfaces allow the customer installation to write

programs that obtain the services of IMS Connect.

However, the IMS Connect Guide and Reference also documents Product-Sensitive

Programming Interfaces and Associated Guidance Information and Diagnosis,

Modification or Tuning Information provided by IMS Connect.

Product-sensitive programming interfaces allow the customer installation to

perform tasks such as diagnosing, modifying, monitoring, repairing, tailoring, or

tuning of IMS and IMS Connect. Use of such interfaces creates dependencies on

the detailed design or implementation of the IBM software product.

Product-sensitive programming interfaces should be used only for these specialized

purposes. Because of their dependencies on detailed design and implementation, it

is to be expected that programs written to such interfaces may need to be changed

in order to run with new product releases or versions, or as a result of service.

Product-Sensitive Programming Interface and Associated Guidance Information is

identified where it occurs, either by an introductory statement to a chapter or

section, or by the following marking: Product-Sensitive Programming Interface and

Associated Guidance Information.

Diagnosis, Modification or Tuning Information is provided to help the customer

installation diagnose, modify, or tune IMS Connect.

Attention: Do not use this Diagnosis, Modification or Tuning Information as a

programming interface.

Notices 243

Diagnosis, Modification or Tuning Information is identified where it occurs, either

by an introductory statement to a chapter or section, or by the following marking:

Diagnosis, Modification or Tuning Information.

Trademarks

Company, product, or service names identified in the IMS Version 9 information

may be trademarks or service marks of International Business Machines

Corporation or other companies. Information about the trademarks of IBM

Corporation in the United States, other countries, or both is located at

www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies,

and have been used at least once in the IMS library:

v Adobe®, the Adobe logo, PostScript®, and the PostScript logo are either

registered trademarks or trademarks of Adobe Systems Incorporated in the

United States, and/or other countries.

v Microsoft®, Windows, Windows NT®, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

v Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc., in

the United States, other countries, or both.

v Linux is a registered trademark of Linus Torvalds in the United States, other

countries, or both.

v UNIX is a registered trademark of The Open Group in the United States and

other countries.

Other company, product, or service names may be trademarks or service marks of

others.

244 IMS Connect Guide and Reference

Bibliography

This bibliography includes all the publications

cited in this book.

v External Security Interface (RACROUTE) Macro

Reference for MVS, GC28-1366

v IMS Version 8 Customization Guide, SC27-1294

v IMS Version 8 Diagnosis Guide and Reference,

LY37-3742

v IMS Version 8 Master Index and Glossary,

SC27-1300

v IMS Version 8 Open Transaction Manager Access

Guide, SC27-1303

v IPv6 Network and Application Design Guide,

SC31-8885

v MVS/ESA Programming: Assembler Services

Guide, GC28-1466

v MVS/ESA Programming: Authorized Assembler

Services Guide, GC28-1467

v MVS/ESA™ SP™ Authorized Assembler Reference,

GC28-1650

v MVS/ESA System Commands, GC28-1442

v OS/390 MVS Authorized Assembler Services

Reference, Volume 3 (LLA-SDU), GC28-1766

v OS/390 MVS Initialization and Tuning Reference,

SC28-1752

v Program Directory for IBM IMS Connect for

OS/390, GI10-8275

v TCP/IP Application Programming Interface

Reference, SC31-7187

v z/OS: Security Server RACF Command Language

Reference, SA22-7687

v z/OS: Security Server RACF Security

Administrators Guide, SA22-7683

v z/OS support for Unicode: Using Conversion

Services, SA22-7649

v z/OS System Secure Sockets Layer Programming,

SC24-5901

v z/OS UNIX System Services Planning, GA22-7800

This bibliography lists all of the information in

the IMS Version 9 library.

IMS Version 9 Library

 Title Acronym Order

number

IMS Version 9: Administration

Guide: Database Manager

ADB SC18-7806

IMS Version 9: Administration

Guide: System

AS SC18-7807

IMS Version 9: Administration

Guide: Transaction Manager

ATM SC18-7808

IMS Version 9: Application

Programming: Database

Manager

APDB SC18-7809

IMS Version 9: Application

Programming: Design Guide

APDG SC18-7810

IMS Version 9: Application

Programming: EXEC DLI

Commands for CICS and IMS

APCICS SC18-7811

IMS Version 9: Application

Programming: Transaction

Manager

APTM SC18-7812

IMS Version 9: Base Primitive

Environment Guide and

Reference

BPE SC18-7813

IMS Version 9: Command

Reference

CR SC18-7814

IMS Version 9: Common Queue

Server Guide and Reference

CQS SC18-7815

IMS Version 9: Common

Service Layer Guide and

Reference

CSL SC18-7816

IMS Version 9: Customization

Guide

CG SC18-7817

IMS Version 9: Database

Recovery Control (DBRC)

Guide and Reference

DBRC SC18-7818

IMS Version 9: Diagnosis

Guide and Reference

DGR LY37-3203

IMS Version 9: Failure Analysis

Structure Tables (FAST) for

Dump Analysis

FAST LY37-3204

IMS Version 9: IMS Connect

Guide and Reference

CT SC18-9287

IMS Version 9: IMS Java Guide

and Reference

JGR SC18-7821

IMS Version 9: Installation

Volume 1: Installation

Verification

IIV GC18-7822

IMS Version 9: Installation

Volume 2: System Definition

and Tailoring

ISDT GC18-7823

IMS Version 9: Master Index

and Glossary

MIG SC18-7826

© Copyright IBM Corp. 2000, 2007 245

Title Acronym Order

number

IMS Version 9: Messages and

Codes, Volume 1

MC1 GC18-7827

IMS Version 9: Messages and

Codes, Volume 2

MC2 GC18-7828

IMS Version 9: Open

Transaction Manager Access

Guide and Reference

OTMA SC18-7829

IMS Version 9: Operations

Guide

OG SC18-7830

IMS Version 9: Release

Planning Guide

RPG GC17-7831

IMS Version 9: Summary of

Operator Commands

SOC SC18-7832

IMS Version 9: Utilities

Reference: Database and

Transaction Manager

URDBTM SC18-7833

IMS Version 9: Utilities

Reference: System

URS SC18-7834

Supplementary Publications

 Title Order number

IMS TM Resource Adapter User’s Guide

and Reference

SC19-1211

IMS Version 9 Fact Sheet GC18-7697

IMS Version 9: Licensed Program

Specifications

GC18-7825

Publication Collections

 Title Format Order

number

IMS Version 9 Softcopy Library CD LK3T-7213

IMS Favorites CD LK3T-7144

Licensed Bill of Forms (LBOF):

IMS Version 9 Hardcopy and

Softcopy Library

Hardcopy

and CD

LBOF-7789

Unlicensed Bill of Forms

(SBOF): IMS Version 9

Unlicensed Hardcopy Library

Hardcopy SBOF-7790

OS/390 Collection CD SK2T-6700

z/OS Software Products

Collection

CD SK3T-4270

z/OS and Software Products

DVD Collection

DVD SK3T-4271

Accessibility Titles Cited in This

Library

 Title Order number

z/OS V1R1.0 TSO Primer SA22-7787

Title Order number

z/OS V1R5.0 TSO/E User’s Guide SA22-7794

z/OS V1R5.0 ISPF User’s Guide,

Volume 1

SC34-4822

Bibliography

246 IMS Connect Guide and Reference

Index

A
ADAPTER configuration statement 15

allocation
HWSRCDR data set 26

required libraries 26

Application Program Family (APF)
authorization 8

SDFSRESL 8

asynchronous output
alternate client ID 126

message flow 127

RESUME TPIPE, alternate client

ID 126

retrieving output for another

client 126

asynchronous output processing
commit mode 125

socket type 125

sync level 125

timer settings 125

asynchronous outputs
auto message control 123

implementing 119

managing and controlling output

messages 120

noauto message control 122

protocols 105

single message control 121

support 118

B
Base Primitive Environment (BPE)

associating exit types with exit

routines 21

configuring for IMS Connect 20

BPE (Base Primitive Environment)
associating exit types with exit

routines 21

authorizing IMS Connect to the

APF 8

configuring for IMS Connect 20

header data 49, 69

BPE configuration PROCLIB member
IMS Connect 20

BPE configuration sample 25

BPE trace table values 21

AWE 22

CBS 22

CMD 22

DISP 22

ERR 22

LATC 22

SSRV 23

STG 23

USRX 23

C
client communication component

(CCC) 4

client communications
IBM WebSphere 4

local option 4

restrictions for local 4

TCP/IP 4

CM0
purge function 98

reroute function 100

COBOL
XML-to-COBOL conversion support

configuring 36

HWSSOAP1, installing 36

command component (CMD) 4

Commit Mode 97

Commit mode 0 97

Commit mode 1 97

commit mode 0
purge function 98

reroute function 100

commit-then-send
purge function 98

reroute function 100

components
client communication component

(CCC) 4

command component (CMD) 4

datastore communication component

(DCC) 4

environment component (EVC) 4

IMS Connect BPE 5

IMSplex communications component

(ICC) 5

IMSplex driver (IPDC) 5

local option communication

component (LOCC) 5

local option driver (PCDC) 5

OTMA driver (OTDC) 5

TCP/IP driver (TIDC) 5

configuration members
IMSplex 15

configuration, port id examples 13

conversational supports 91

CSM (Complete Status Message) 72

D
datastore communication component

(DCC) 4

DATASTORE configuration statement 14

Datastore Information Block (DSIB)
contents 236

dead letter queue HWS$DLQ 132

Destination Resolution exit, sample

OTMA 28, 77

installing 30

modifying 32

DFSnnnnn messages, responding to 129

distributed two-phase commit 84

E
ECB (Even Control Block) 10

environment component (EVC) 4

Event Interface Control Block (EICB)
contents 235

Event Interface Control Block (EICB)

contents 206

event record format
begin accept socket 215

begin bind socket 214

begin close socket 223

begin create context 230

begin initialization of message

exits 216

begin initialize API 214

begin local port setup 221

begin RRS commit/abort 232

begin RRS Connect 222

begin RRS disconnect 223

begin RRS prepare 231

begin SAF request 225

begin SCI de-registration 218

begin SCI registration 217

begin secure environment close 220

begin secure environment open 220

begin secure environment select 233

Connect region initialization 212

Connect region termination 212

datastore available 216

datastore unavailable 216

deallocate session 227

end accept socket 215

end bind socket 214

end close socket 224

end create context 231

end initialize API 214

end local port setup 221

end RRS commit/abort 232

end RRS Connect 222

end RRS disconnect 223

end RRS prepare 231

end SAF request 225

end SCI de-registration 218

end SCI registration 217

end secure environment close 221

end secure environment open 220

end secure environment select 233

list in-doubt context 222

listen on socket 215

local client connect 229

local client disconnect 230

local message receive 230

local message send 229

local message send/receive 230

message exit called for READ, XMIT,

or EXER 224

message exit INIT call 219

© Copyright IBM Corp. 2000, 2007 247

event record format (continued)
message exit return for READ, XMIT,

or EXER 225

message exit TERM call 219

message received from OTMA 226

message received from SCI 227

message sent to OTMA 226

message sent to SCI 226

OTMA time-out 227

prepare socket read 224

read socket 228

recorder trace DCB opened 218

recorder trace DCB pre-close 219

RESUME TPIPE response

received 234

session error 227

support task created 213

support task terminating 213

TMEMBER joins XCF group 217

TMEMBER leaves XCF group 217

trigger 228

write socket 229

event record formats 212

Event Record Parameter List (ERPL) 207

event recording DSECTS 238

Event Recording Parameter List (ERPL)
contents 234

event recording routine,

EVENT_ADDRESS 207

event types
keys 208

multiple 208

single 208

EVENT_ADDRESS 207

EXER subroutine 58

exit list PROCLIB member name 21

EXITDEF statement
keywords 21

exits
IMS Connect user initialization 28

IMS Connect user message 28

sample OTMA DRU 28

extended local reason codes 163

extended local return codes 163

H
hang condition 13

hold queue, asynchronous
retrieving asynchronous output for

alternate client IDs 126

HWS configuration statement 10

HWS$DLQ 132

HWSCSLO0 28

about 63

installing 35

requirements 35

HWSCSLO1 28, 35

installing 35

requirements 35

HWSEXPRM macro 74

HWSIMSCB macro 75

HWSIMSEA macro 75

HWSIMSO0
about 34, 61, 149, 159, 189

fixed IRM format 43

INCLUDE statements 35

HWSIMSO0 (continued)
installation 30

IRM 43

reason codes 159

return codes 159

HWSIMSO1 28, 61

INCLUDE statements 35

IRM 43

reason codes 160

return codes 159

HWSJAVA0
about 32, 63, 151

local option client communication 4

HWSOMPFX macro 74

HWSSMPL0
about 32, 150, 155, 189

and IRM 43

fixed IRM format 43

installation 30

IRM 43

modifying 62

PassTicket support 34

reason codes 156

return codes 155

HWSSMPL1 28

and IRM 43

IRM 43

link-edit requirements 32

modifying 62

PassTicket support 34

reason codes 156

return codes 155

HWSSOAP1 28

about 64

installing 36

reason codes 158

requirements 36

return codes 158

HWSTECL0 28

about 205

DSECTs 238

error message format 208

Event Interface Control Block 206

event record formats 212

Event Record Parameter List 207

initializing 206

installing 205

invoking 207

modifying 205

registers at entry 206

registers at return 207

terminating 239

HWSUINIT
about 32, 75, 79

control blocks 79

register contents 80

restrictions for EXIT= parameter 11

subroutines 79

user message exits 11

HWSUINIT0
installation 30

HWSXIB macro 75

HWSXIBDS macro 75

HWSYDRU0 28

about 32, 77

exit for asynchronous output 77

installation 30

HWSYDRU0 (continued)
using 77

I
ICON_NAME

security configuration 20

IMS
DFSnnnnn messages 129, 130, 131

recoverable transactions 103

IMS Connect
ADAPTER configuration

statement 15

alternate client ID 126

asynchronous output support 126

Base Primitive Environment (BPE),

configuring 20

BPE configuration
EXITDEF parameter 21

EXITMBR parameter 21

XML adapter 21

BPE configuration PROCLIB member
keywords 20

specifying 20

client call flows 127

CM0, purge function 98

CM0, reroute function 100

commit mode 0, purge function 98

commit mode 0, reroute function 100

commit-then-send, purge function 98

commit-then-send, reroute

function 100

communication with user message

exits 49

components 4

configuration members 9

DATASTORE configuration

statement 14

HWS configuration statement 10

TCP/IP configuration

statement 10

configuration statement parameters 9

conversational protocols 94

customizing 28

dead letter queue 132

definition and tailoring 7

environment 8

exit list PROCLIB member name 21

EXITDEF parameter 21

EXITMBR parameter 21

HWS$DLQ 132

HWSSOAP1 64

reason codes 158

return codes 158

HWSSOAP1, installing 36

introduction 3

invoking 27

JCL 197

macros 74

message time-out intervals 110

OTMA conversational protocol 92

overview 3

post codes 165

purge function 98

purging output 98

reason codes
HWSSOAP1 158

248 IMS Connect Guide and Reference

IMS Connect (continued)
recorder log record mapping 171

reroute function 100

rerouting output 100

RESUME TPIPE 126

return and reason codes 155

return codes
HWSSOAP1 158

sample configurations 16

security 64

security for 19, 133, 189

support for IMSplexes 81

time-out intervals, setting 110

transaction protocols 91

two-phase commit 87

user message exits
HWSCSLO0 28

HWSCSLO1 28

HWSIMSO1 28

HWSSMPL1 28

HWSSOAP1 28

HWSTECL0 28

HWSYDRU0 28

XML-to-COBOL conversion support
description 36

HWSSOAP1 36

XML adapter 36

XML converter 36

XML-to-COBOL conversion support,

configuring 36

IMS Connect trace table values 23

IMS Connector for Java 28

message structures 65

user message exit 63, 151

IMS SOAP Gateway
IMS Connect user message exit 64

IMS TCP/IP OTMA Connection (IMS

TOC) 40

IMSplex communications component

(ICC) 5

IMSplex driver (IPDC) 5

IMSplex support 81

IMSplexes
environment requirements 81

HWSCSLO0 63

IMS Connect BPE configuration

file 82

IMS Connect configuration file 82

IMS Control Center 81

installation 82

keyword parameters 15

OM access 81

SCI (Structure Call Interface) 81

user message exit 63

incore trace tables formatting 26

INIT subroutine 50

input message structure 202

input message structure from clients 60

Internet Protocol Version 6 (IPV6) 18

invoking IMS Connect 27

IRM (IMS Request Message) 40, 43, 201

IRM_TIMER
usage 110

values 110

J
JCL to print RECORDER output 38

JCL values
about 27

BPECFG 28

HWSCFG 28

RGN 27

SOUT 28

JCL, sample for user exits 197

L
link-edit requirements

HWSJAVA0 31

HWSSMPL0 32

HWSSMPL1 32

HWSUINIT 31

HWSYDRU0 31

local option client communications
about 4

configuring security 20

requirements 4

updates in the MVS PPT 9

local option clients 3

local option communication component

(LOCC) 5

local option driver (PCDC) 5

M
macros

HWSEXPRM 74

HWSIMSCB 75

HWSIMSEA 75

HWSOMPFX 74

HWSXIB 75

HWSXIBDS 75

MAXFILEPROC parameter, UNIX System

Services 12

MAXSOC parameter 11

message formats TCP/IP 40

message structures
for IMS Connector for Java 65

for non-IMS Connector for Java 65

message translation 201

multiple event 208

multiple event types 210

MVS Program Properties Table (PPT)
local option client communication

updates 9

MVS Program Properties Tables (PPT)
TCP/IP updates 9

updating 9

O
OTMA

and IMS Connect configuration

statement parameters 9

driver 5

headers 175

reason codes 161

return codes 161

sample DRU exit for IMS Connect 77

OTMA driver (OTDC) 5

output message structure
about 202

to clients 61

P
PassTicket

bypassing 133

replay protection 135

security support 133

Ping 147

port configuration examples 13

post codes 165

Protocols
asynchronous outputs 105

IMS Connect conversational 94

IMS Connect Send Only 104

purge function, IMS Connect 98

R
RACF for local option security 20

RACF PassTicket support 133

READ subroutine 53

reason codes
HWSSOAP1 158

RECORDER
JCL to print output 38

recorder log record mapping 171

register contents
subroutine entry 50

subroutine exit 50

reroute function, IMS Connect 100

RESUME TPIPE
alternate client ID 126

IRM_RT_ALTCID 126

retrieving output for another

client 126

return codes
HWSSOAP1 158

RRM (Request Mod Message) 71

RSM (Request Status Message) 72

S
Secure Sockets Layer (SSL)

communication with IMS Connect 49

libraries required for 8

SSLENVAR parameter 13

SSLPORT parameter 13

security
local option 20

using your own checking routine 35

security exit
IMSLSECX 64

Security Information Block (SAFIB)
contents 237

security support
about 19, 64, 133, 189

bypassing PassTicket 133

PassTicket 133

PassTicket replay protection 135

Send Only protocol 104

send-only transactions
rerouting output 100

SETRLIMI 12

Index 249

single event 208

single event types 208

socket connections 107

non-persistent 108

persistent 108, 130

setting type of 108

transaction 108, 130

sockets
maximum for IMS Connect 11

SSL
See Secure Sockets Layer (SSL)

subroutines
EXER 58

INIT 50

READ 53

register contents 50

TERM 57

XMIT 56

Synch Level
about 97

CONFIRM 98

NONE 97

SYNCH 98

syntax diagram
how to read xv

T
TCP/IP 39

client communications 4

creating the IMS Connect

configuration member 9

driver 4

IMS Connect configuration 8

message formats 39

message structures 71

purge function for output

messages 98

reroute function for output

messages 100

security exit 64

user message exit 61

TCP/IP configuration statement 10

ECB parameter 10

EXIT parameter 10

HOSTNAME parameter 11

IPV6 parameter 11

keyword parameters 10

MAXSOC parameter 11

PORTID parameter 12

RACFID parameter 13

SSLENVAR parameter 13

SSLPORT parameter 13

TIMEOUT parameter 13

TCP/IP driver (TIDC) 5

TCP/IP Information Block (TCPIB)
contents 235

TERM subroutine 57

time settings
IMS Connect time-out intervals 110

time-out
IMS Connect input messages 110

timer settings 125

tpipes
retrieving asynchronous output for

alternate client IDs 126

trace table levels 24

trace table levels (continued)
ERROR 25

HIGH 25

NONE 25

trace table types
for IMS Connect components 24

trace table values
CMDT 23

ENVT 23

for IMS Connect 23

HWSI 23

HWSN 23

HWSO 24

HWSW 24

OMDR 24

OTMA 24

PCDR 24

RRSI 24

TCPI 24

Transport Layer Security (TLS)
See Secure Sockets Layer (SSL)

Trusted User 33

TSO 26

two-phase commit
application component 84

application server 84

commit phase 85

communication resource manager

(CRM) 84

context token 84

distributed client flow 85

distributed two-phase commit 84

enterprise information system 84

general description 83

global transaction 84

IMS Connector for Java 84

local option 87

one-phase commit optimization 86

prepare phase 85

resource adapter 84

resource manager 84

RRS (Resource Recovery Service) 84

server distributed syncpoint manager

(SDSRM) 84

transaction manager 84

X/Open XA protocol 84

U
unicode 201

user initialization exit
about 79

IMS Connect 28

installing 30

modifying 32

user message exits
communication with IMS Connect 49

description and structures 60

HWSIMSO0 149

HWSJAVA0 151

HWSSMPL0 150

IMS Connect 28

installing 30

modifying 32

support 39

trusted user support 33

V
Variable Data Block (VDB)

contents 238

X
XIBAREA 10

XMIT subroutine 56

XML
IMS Connect conversion support

BPE configuration 21

XML-to-COBOL conversion support
configuring 36

HWSSOAP1, installing 36

250 IMS Connect Guide and Reference

����

Program Number: 5655-J38

Printed in USA

SC18-9287-04

Sp
in
e
in
fo
rm
at
io
n:

 �
�

�

IM
S

IM
S

Co
nn

ec
t G

ui
de

an

d
R

ef
er

en
ce

Ve

rs
io

n
9

	Contents
	Figures
	Tables
	About This Book
	Prerequisite Knowledge
	Summary of Contents
	IBM Product Names Used in This Information
	How to Read Syntax Diagrams
	Accessibility Features for IMS Version 9
	Accessibility Features
	Keyboard Navigation
	Related Accessibility Information
	IBM and Accessibility

	How to Send Your Comments

	Summary of Changes
	Changes to the Current Edition of This Book for IMS Version 9
	Changes to This Book for IMS Version 9
	Library Changes for IMS Version 9
	New and Revised Titles
	Organizational Changes
	Terminology Changes

	Part 1. IMS Connect Administration
	Chapter 1. Overview of IMS Connect
	Introduction to IMS Connect
	IMS Connect Components

	Chapter 2. IMS Connect Definition and Tailoring
	Defining the IMS Connect Environment
	Configuring IMS Connect
	Authorizing IMS Connect to the APF
	Updating the MVS PPT
	Creating the IMS Connect Configuration Member
	Enabling Support for Internet Protocol Version 6

	Defining IMS Connect Security
	Configuring the IMS Connect Base Primitive Environment (BPE)
	Changing the IMS Connect BPE Configuration Parameter PROCLIB Member
	Formatting Incore Trace Tables

	Setting IMS Connect Allocations
	Invoking IMS Connect
	Customizing IMS Connect
	Installing HWSJAVA0, HWSUINIT, HWSYDRU0, HWSSMPL0, and HWSSMPL1
	Modifying HWSJAVA0, HWSUINIT, HWSSMPL0, HWSSMPL1, and HWSYDRU0
	Modifying User Message Exits to Provide Trusted User Support
	Modifying HWSSMPL0 and HWSSMPL1 for PassTicket
	Modifying HWSIMSO0 and HWSIMSO1
	Installing HWSCSLO0 and HWSCSLO1
	Installing HWSSOAP1

	Configuring XML-to-COBOL Conversion Support for IMS SOAP Gateway
	Prerequisites to IMS Connect XML Conversion Support
	Restrictions to IMS Connect XML Conversion Support
	Steps for Configuring IMS Connect XML Conversion Support
	Example Configuration Statements for XML Conversion Support

	JCL to Print IMS Connect RECORDER Output

	Chapter 3. IMS Connect User Message Exit Support
	How IMS Connect Communicates with a TCP/IP Client
	Format of Fixed Portion of IRM in Messages Sent to IMS Connect
	Format of User Portion of IRM for HWSSMPL0, HWSSMPL1, and User-Written Message Exit Routines
	Output from Client Exit
	Other IMS Connect Structures

	How IMS Connect Communicates with an SSL Client
	How IMS Connect Communicates with User Message Exits
	Register Contents on Subroutine Entry
	Register Contents on Subroutine Exit
	INIT Subroutine
	Contents of Parmlist Pointed to by Register 1 at INIT Subroutine Entry
	Contents of Parmlist Pointed to by Register 1 at INIT Subroutine Exit

	READ Subroutine
	Contents of Parmlist Pointed to by Register 1 at READ Subroutine Entry
	Contents of Parmlist Pointed to by Register 1 at READ Subroutine Exit

	XMIT Subroutine
	Contents of Parmlist Pointed to by Register 1 at XMIT Subroutine Entry
	Contents of Parmlist Pointed to by Register 1 at XMIT Subroutine Exit

	TERM Subroutine
	Contents of Parmlist Pointed to by Register 1 at TERM Subroutine Entry
	Contents of Parmlist Pointed to by Register 1 at TERM Subroutine Exit

	EXER Subroutine
	Contents of Parmlist Pointed to by Register 1 at EXER Subroutine Entry
	Contents of Parmlist Pointed to by Register 1 at EXER Subroutine Exit

	User Exit Message Description and Structures
	Input Messages from Client
	Output Message to Client
	IMS Connect User Message Exit (HWSIMSO0 and HWSIMSO1)
	Sample User Message Exits (HWSSMPL0 and HWSSMPL1)
	IMS Connector for Java User Message Exit (HWSJAVA0)
	IMS Connect IMSplex Message Exits (HWSCSLO0 and HWSCSLO1)
	IMS SOAP Gateway Message Exit (HWSSOAP1)
	Security Exit
	Message Structures
	Input Message From Client and Passed to Exit
	Input Message Returned From Message Exit
	Output Message From IMS Connect to Client
	Output Message From Message Exit

	Macros

	Chapter 4. IMS Connect DRU Exit for Asynchronous Output Support
	How IMS Connect Communicates with the DRU Exit
	How to Use the HWSYDRU0 Exit

	Chapter 5. IMS Connect User Initialization Exit Support
	How IMS Connect Communicates with HWSUINIT
	Register Contents on HWSUINIT Entry
	Register Contents on HWSUINIT Exit

	Chapter 6. IMS Connect IMSplex Support
	IMSplex Support
	IMSplex Support Environment
	Installing IMSplex Support

	Chapter 7. IMS Connect Two-Phase Commit Support
	Overview of Two-Phase Commit Protocol
	Distributed Two-Phase Commit Support
	Global (XA) transaction with TCP/IP
	Global Transaction with One-Phase Commit Optimization

	Local Option Two-Phase Commit Support

	Part 2. IMS Connect Application Programming
	Chapter 8. Protocols
	Transaction Restrictions and Limitations
	Conversational Support
	OTMA Conversational Protocols
	Send-then-commit, sync level=none
	Send-then-commit, sync level=confirm

	IMS Connect Conversational Protocols
	Send-then-commit, sync level=none, transaction terminated from the program
	Send-then-commit, sync level=none, transaction terminated from the client
	Send-then-commit, sync level=confirm, ACK response
	Send-then-commit, sync level=confirm, NAK response

	Commit Mode and Synch Level Definitions
	Purging Undeliverable Commit-Then-Send Output
	Specifying the Purge Function For Undeliverable Commit-Then-Send Output
	When IMS Purges Undeliverable Commit-Then-Send Output
	The Purge Function, Multiple-Message Output, and NAKs

	Rerouting Commit-Then-Send Output
	Specifying the Reroute Function For Commit-Then-Send Output
	Specifying a Destination for Rerouted Output
	When IMS Reroutes Commit-Then-Send Output
	The Reroute Function, Multiple-Message Output, and NAKs

	Recoverable IMS Transactions
	Send Only Protocol
	Send only with acknowledgement protocol
	Send only with serial delivery protocol

	Resume Tpipe/Receive Protocol for Asynchronous Output
	Socket Connections
	Persistent Sockets
	Transaction Sockets
	Non-Persistent Sockets
	Setting Socket Types
	Socket Processing for Transactions

	Time-out intervals on input messages
	Timer interval specifications
	Cancelling a message timer

	Asynchronous Output Support
	Implementing Asynchronous Output Support
	Enabling End User Asynchronous Output Requests

	Managing and Controlling Asynchronous Output Messages
	Single Message Control
	Single with Wait Message Control
	Noauto Message Control
	Nooption Message Control
	Auto Message Control
	Execution Time Out During RESUME TPIPE with Auto Message Control Option
	Values for Asynchronous Output Processing

	Retrieving asynchronous output from an alternate OTMA hold queue
	Asynchronous Output Message Flow

	IMS Connect Client Call Flows
	IMS Connect dead letter queue (HWS$DLQ)

	Chapter 9. Security Support
	RACF PassTicket Support
	PassTicket Replay Protection Considerations

	SSL Connections
	z/OS Key Management
	SSL Initialization
	SSL Default Setup
	Sample JCL for RACF-Managed SSL

	Chapter 10. IMS Connect XML Message Conversion
	IMS Connect XML Converters
	Structure of the XML Message
	Message Conversion Example

	Chapter 11. Ping Support
	Chapter 12. User Message Exits for IMS Connect
	HWSIMSO0 and HWSIMSO1 User Message Exits
	HWSSMPL0 and HWSSMPL1 User Message Exits
	HWSJAVA0 User Message Exit
	HWSCSLO0 and HWSCSLO1 User Message Exits for Control Center

	Part 3. IMS Connect Return and Reason Codes
	Chapter 13. IMS Connect Return and Reason Codes
	HWSSMPL0, HWSSMPL1, HWSCSLO0, and HWSCSLO1
	HWSSOAP1
	HWSIMSO0 and HWSIMSO1
	IMS Connector for Java
	Extended Local Return and Reason Codes
	IMS Connect Post Codes
	XML Adapter Error Codes

	Part 4. Appendixes
	Appendix A. Recorder Log Record Mapping
	Appendix B. OTMA Headers
	Appendix C. HWSSMPL0, HWSSMPL1, HWSIMSO0, and HWSIMSO1 Security Actions
	Appendix D. IMS Connect JCL
	HWSSMPL0 Sample JCL
	HWSSMPL1 Sample JCL
	HWSJAVA0 Sample JCL
	HWSYDRU0 Sample JCL
	HWSUINIT Sample JCL

	Appendix E. Unicode Considerations
	Message Translation
	Input Message Format Sent by the Client
	Output Message Format Received by the Client

	Appendix F. Suggested TCP/IP Settings
	Appendix G. HWSTECL0 User Exit
	Modifying HWSTECL0 User Exit
	HWSTECL0 Initialization
	Invoking HWSTECL0 for Event Recording
	Error Message Format

	Event Types
	Event Record Formats
	Control Blocks and DSECTS for Event Recording
	Event Recording Parameter List (ERPL)
	Event Interface Control Block (EICB)
	TCP/IP Information Block (TCPIB)
	Datastore Information Block (DSIB)
	Security Information Block (SAFIB)
	Variable Data Block (VDB)
	DSECTS for Event Recording

	Terminating HWSTECL0

	Notices
	Programming Interface Information
	Trademarks

	Bibliography
	IMS Version 9 Library
	Supplementary Publications
	Publication Collections
	Accessibility Titles Cited in This Library

	Index

